7,476 research outputs found

    Partially Walking a Polygon

    Get PDF
    Deciding two-guard walkability of an n-sided polygon is a well-understood problem. We study the following more general question: How far can two guards reach from a given source vertex while staying mutually visible, in the (more realistic) case that the polygon is not entirely walkable? There can be Theta(n) such maximal walks, and we show how to find all of them in O(n log n) time

    Space-Time Trade-offs for Stack-Based Algorithms

    Get PDF
    In memory-constrained algorithms we have read-only access to the input, and the number of additional variables is limited. In this paper we introduce the compressed stack technique, a method that allows to transform algorithms whose space bottleneck is a stack into memory-constrained algorithms. Given an algorithm \alg\ that runs in O(n) time using Θ(n)\Theta(n) variables, we can modify it so that it runs in O(n2/s)O(n^2/s) time using a workspace of O(s) variables (for any so(logn)s\in o(\log n)) or O(nlogn/logp)O(n\log n/\log p) time using O(plogn/logp)O(p\log n/\log p) variables (for any 2pn2\leq p\leq n). We also show how the technique can be applied to solve various geometric problems, namely computing the convex hull of a simple polygon, a triangulation of a monotone polygon, the shortest path between two points inside a monotone polygon, 1-dimensional pyramid approximation of a 1-dimensional vector, and the visibility profile of a point inside a simple polygon. Our approach exceeds or matches the best-known results for these problems in constant-workspace models (when they exist), and gives the first trade-off between the size of the workspace and running time. To the best of our knowledge, this is the first general framework for obtaining memory-constrained algorithms

    Design of pedestrian network friendliness maps

    Get PDF
    This article introduces the concept of pedestrian, or walking friendliness, and presents a methodology for obtaining maps thereof. Walking friendliness is a quality of walking indicator, defined for any given origin in a city, which combines accessibility measures, based on impedance between that origin and destinations, with performance scores for the pedestrian infrastructure linking those origins and destinations. The methodology uses geographic information systems to obtain walking friendliness values and represent them in a map. The approach is demonstrated through a case study for the city of Coimbra, Portugal, for which friendliness maps were derived. The procedure and maps that were produced can be scaled to any size of city.info:eu-repo/semantics/publishedVersio
    corecore