6,825 research outputs found

    Hidden Markov Models and their Application for Predicting Failure Events

    Full text link
    We show how Markov mixed membership models (MMMM) can be used to predict the degradation of assets. We model the degradation path of individual assets, to predict overall failure rates. Instead of a separate distribution for each hidden state, we use hierarchical mixtures of distributions in the exponential family. In our approach the observation distribution of the states is a finite mixture distribution of a small set of (simpler) distributions shared across all states. Using tied-mixture observation distributions offers several advantages. The mixtures act as a regularization for typically very sparse problems, and they reduce the computational effort for the learning algorithm since there are fewer distributions to be found. Using shared mixtures enables sharing of statistical strength between the Markov states and thus transfer learning. We determine for individual assets the trade-off between the risk of failure and extended operating hours by combining a MMMM with a partially observable Markov decision process (POMDP) to dynamically optimize the policy for when and how to maintain the asset.Comment: Will be published in the proceedings of ICCS 2020; @Booklet{EasyChair:3183, author = {Paul Hofmann and Zaid Tashman}, title = {Hidden Markov Models and their Application for Predicting Failure Events}, howpublished = {EasyChair Preprint no. 3183}, year = {EasyChair, 2020}

    Bayesian Nonparametric Feature and Policy Learning for Decision-Making

    Full text link
    Learning from demonstrations has gained increasing interest in the recent past, enabling an agent to learn how to make decisions by observing an experienced teacher. While many approaches have been proposed to solve this problem, there is only little work that focuses on reasoning about the observed behavior. We assume that, in many practical problems, an agent makes its decision based on latent features, indicating a certain action. Therefore, we propose a generative model for the states and actions. Inference reveals the number of features, the features, and the policies, allowing us to learn and to analyze the underlying structure of the observed behavior. Further, our approach enables prediction of actions for new states. Simulations are used to assess the performance of the algorithm based upon this model. Moreover, the problem of learning a driver's behavior is investigated, demonstrating the performance of the proposed model in a real-world scenario

    Iterated filtering methods for Markov process epidemic models

    Full text link
    Dynamic epidemic models have proven valuable for public health decision makers as they provide useful insights into the understanding and prevention of infectious diseases. However, inference for these types of models can be difficult because the disease spread is typically only partially observed e.g. in form of reported incidences in given time periods. This chapter discusses how to perform likelihood-based inference for partially observed Markov epidemic models when it is relatively easy to generate samples from the Markov transmission model while the likelihood function is intractable. The first part of the chapter reviews the theoretical background of inference for partially observed Markov processes (POMP) via iterated filtering. In the second part of the chapter the performance of the method and associated practical difficulties are illustrated on two examples. In the first example a simulated outbreak data set consisting of the number of newly reported cases aggregated by week is fitted to a POMP where the underlying disease transmission model is assumed to be a simple Markovian SIR model. The second example illustrates possible model extensions such as seasonal forcing and over-dispersion in both, the transmission and observation model, which can be used, e.g., when analysing routinely collected rotavirus surveillance data. Both examples are implemented using the R-package pomp (King et al., 2016) and the code is made available online.Comment: This manuscript is a preprint of a chapter to appear in the Handbook of Infectious Disease Data Analysis, Held, L., Hens, N., O'Neill, P.D. and Wallinga, J. (Eds.). Chapman \& Hall/CRC, 2018. Please use the book for possible citations. Corrected typo in the references and modified second exampl

    Bayesian Optimization with Unknown Constraints

    Full text link
    Recent work on Bayesian optimization has shown its effectiveness in global optimization of difficult black-box objective functions. Many real-world optimization problems of interest also have constraints which are unknown a priori. In this paper, we study Bayesian optimization for constrained problems in the general case that noise may be present in the constraint functions, and the objective and constraints may be evaluated independently. We provide motivating practical examples, and present a general framework to solve such problems. We demonstrate the effectiveness of our approach on optimizing the performance of online latent Dirichlet allocation subject to topic sparsity constraints, tuning a neural network given test-time memory constraints, and optimizing Hamiltonian Monte Carlo to achieve maximal effectiveness in a fixed time, subject to passing standard convergence diagnostics.Comment: 14 pages, 3 figure
    • …
    corecore