302 research outputs found

    Deep Learning in Mobile and Wireless Networking: A Survey

    Get PDF
    The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, agile management of network resource to maximize user experience, and extraction of fine-grained real-time analytics. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques to help managing the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research

    Latitude, longitude, and beyond:mining mobile objects' behavior

    Get PDF
    Rapid advancements in Micro-Electro-Mechanical Systems (MEMS), and wireless communications, have resulted in a surge in data generation. Mobility data is one of the various forms of data, which are ubiquitously collected by different location sensing devices. Extensive knowledge about the behavior of humans and wildlife is buried in raw mobility data. This knowledge can be used for realizing numerous viable applications ranging from wildlife movement analysis, to various location-based recommendation systems, urban planning, and disaster relief. With respect to what mentioned above, in this thesis, we mainly focus on providing data analytics for understanding the behavior and interaction of mobile entities (humans and animals). To this end, the main research question to be addressed is: How can behaviors and interactions of mobile entities be determined from mobility data acquired by (mobile) wireless sensor nodes in an accurate and efficient manner? To answer the above-mentioned question, both application requirements and technological constraints are considered in this thesis. On the one hand, applications requirements call for accurate data analytics to uncover hidden information about individual behavior and social interaction of mobile entities, and to deal with the uncertainties in mobility data. Technological constraints, on the other hand, require these data analytics to be efficient in terms of their energy consumption and to have low memory footprint, and processing complexity

    Context-Aware Recommendation Systems in Mobile Environments

    Get PDF
    Nowadays, the huge amount of information available may easily overwhelm users when they need to take a decision that involves choosing among several options. As a solution to this problem, Recommendation Systems (RS) have emerged to offer relevant items to users. The main goal of these systems is to recommend certain items based on user preferences. Unfortunately, traditional recommendation systems do not consider the user’s context as an important dimension to ensure high-quality recommendations. Motivated by the need to incorporate contextual information during the recommendation process, Context-Aware Recommendation Systems (CARS) have emerged. However, these recent recommendation systems are not designed with mobile users in mind, where the context and the movements of the users and items may be important factors to consider when deciding which items should be recommended. Therefore, context-aware recommendation models should be able to effectively and efficiently exploit the dynamic context of the mobile user in order to offer her/him suitable recommendations and keep them up-to-date.The research area of this thesis belongs to the fields of context-aware recommendation systems and mobile computing. We focus on the following scientific problem: how could we facilitate the development of context-aware recommendation systems in mobile environments to provide users with relevant recommendations? This work is motivated by the lack of generic and flexible context-aware recommendation frameworks that consider aspects related to mobile users and mobile computing. In order to solve the identified problem, we pursue the following general goal: the design and implementation of a context-aware recommendation framework for mobile computing environments that facilitates the development of context-aware recommendation applications for mobile users. In the thesis, we contribute to bridge the gap not only between recommendation systems and context-aware computing, but also between CARS and mobile computing.<br /

    Probabilistic models for mobile phone trajectory estimation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 157-161).This dissertation is concerned with the problem of determining the track or trajectory of a mobile device - for example, a sequence of road segments on an outdoor map, or a sequence of rooms visited inside a building - in an energy-efficient and accurate manner. GPS, the dominant positioning technology today, has two major limitations. First, it consumes significant power on mobile phones, making it impractical for continuous monitoring. Second, it does not work indoors. This dissertation develops two ways to address these limitations: (a) subsampling GPS to save energy, and (b) using alternatives to GPS such as WiFi localization, cellular localization, and inertial sensing (with the accelerometer and gyroscope) that consume less energy and work indoors. The key challenge is to match a sequence of infrequent (from sub-sampling) and inaccurate (from WiFi, cellular or inertial sensing) position samples to an accurate output trajectory. This dissertation presents three systems, all using probabilistic models, to accomplish this matching. The first, VTrack, uses Hidden Markov Models to match noisy or sparsely sampled geographic (lat, lon) coordinates to a sequence of road segments on a map. We evaluate VTrack on 800 drive hours of GPS and WiFi localization data collected from 25 taxicabs in Boston. We find that VTrack tolerates significant noise and outages in location estimates, and saves energy, while providing accurate enough trajectories for applications like travel-time aware route planning. CTrack improves on VTrack with a Markov Model that uses "soft" information in the form of raw WiFi or cellular signal strengths, rather than geographic coordinates. It also uses movement and turn "hints" from the accelerometer and compass to improve accuracy. We implement CTrack on Android phones, and evaluate it on cellular signal data from over 126 (1,074 miles) hours of driving data. CTrack can retrieve over 75% of a user's drive accurately on average, even from highly inaccurate (175 metres raw position error) GSM data. iTrack uses a particle filter to combine inertial sensing data from the accelerometer and gyroscope with WiFi signals and accurately track a mobile phone indoors. iTrack has been implemented on the iPhone, and can track a user to within less than a metre when walking with the phone in the hand or pants pocket, over 5 x more accurately than existing WiFi localization approaches. iTrack also requires very little manual effort for training, unlike existing localization systems that require a user to visit hundreds or thousands of locations in a building and mark them on a map.by Arvind Thiagarajan.Ph.D

    Towards pedestrian-aware autonomous cars

    Get PDF
    • …
    corecore