48 research outputs found

    Partially APN Boolean functions and classes of functions that are not APN infinitely often

    Get PDF
    In this paper we define a notion of partial APNness and find various characterizations and constructions of classes of functions satisfying this condition. We connect this notion to the known conjecture that APN functions modified at a point cannot remain APN. In the second part of the paper, we find conditions for some transformations not to be partially APN, and in the process, we find classes of functions that are never APN for infinitely many extensions of the prime field \F_2, extending some earlier results of Leander and Rodier.Comment: 24 pages; to appear in Cryptography and Communication

    Towards a deeper understanding of APN functions and related longstanding problems

    Get PDF
    This dissertation is dedicated to the properties, construction and analysis of APN and AB functions. Being cryptographically optimal, these functions lack any general structure or patterns, which makes their study very challenging. Despite intense work since at least the early 90's, many important questions and conjectures in the area remain open. We present several new results, many of which are directly related to important longstanding open problems; we resolve some of these problems, and make significant progress towards the resolution of others. More concretely, our research concerns the following open problems: i) the maximum algebraic degree of an APN function, and the Hamming distance between APN functions (open since 1998); ii) the classification of APN and AB functions up to CCZ-equivalence (an ongoing problem since the introduction of APN functions, and one of the main directions of research in the area); iii) the extension of the APN binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}} into an infinite family (open since 2006); iv) the Walsh spectrum of the Dobbertin function (open since 2001); v) the existence of monomial APN functions CCZ-inequivalent to ones from the known families (open since 2001); vi) the problem of efficiently and reliably testing EA- and CCZ-equivalence (ongoing, and open since the introduction of APN functions). In the course of investigating these problems, we obtain i.a. the following results: 1) a new infinite family of APN quadrinomials (which includes the binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}}); 2) two new invariants, one under EA-equivalence, and one under CCZ-equivalence; 3) an efficient and easily parallelizable algorithm for computationally testing EA-equivalence; 4) an efficiently computable lower bound on the Hamming distance between a given APN function and any other APN function; 5) a classification of all quadratic APN polynomials with binary coefficients over F2nF_{2^n} for n≤9n \le 9; 6) a construction allowing the CCZ-equivalence class of one monomial APN function to be obtained from that of another; 7) a conjecture giving the exact form of the Walsh spectrum of the Dobbertin power functions; 8) a generalization of an infinite family of APN functions to a family of functions with a two-valued differential spectrum, and an example showing that this Gold-like behavior does not occur for infinite families of quadratic APN functions in general; 9) a new class of functions (the so-called partially APN functions) defined by relaxing the definition of the APN property, and several constructions and non-existence results related to them.Doktorgradsavhandlin

    Partially APN functions with APN-like polynomial representations

    Get PDF
    In this paper we investigate several families of monomial functions with APN-like exponents that are not APN, but are partially 0-APN for infinitely many extensions of the binary field F2. We also investigate the differential uniformity of some binomial partial APN functions. Furthermore, the partial APN-ness for some classes of multinomial functions is investigated. We show also that the size of the pAPN spectrum is preserved under CCZ-equivalence.acceptedVersio

    On the behavior of some APN permutations under swapping points

    Get PDF
    The article of record as published may be found at https://doi.org/10.1007/s12095-021-00520-zWe define the pAPN-spectrum (which is a measure of how close a function is to being APN) of an (n,n)-function F and investigate how its size changes when two of the outputs of a given function F are swapped. We completely characterize the behavior of the pAPN-spectrum under swapping outputs when F is the inverse function over F2n . We further theoretically investigate this behavior for functions from the Gold and Welch monomial APN families, and experimentally determine the size of the pAPN-spectrum after swapping outputs for representatives from all infinite monomial APN families up to dimension n = 10; based on our computation results, we conjecture that the inverse function is the only monomial APN function for which swapping two its outputs can leave an empty pAPN-spectrum
    corecore