1,349 research outputs found

    Data Mining in Smart Grids

    Get PDF
    Effective smart grid operation requires rapid decisions in a data-rich, but information-limited, environment. In this context, grid sensor data-streaming cannot provide the system operators with the necessary information to act on in the time frames necessary to minimize the impact of the disturbances. Even if there are fast models that can convert the data into information, the smart grid operator must deal with the challenge of not having a full understanding of the context of the information, and, therefore, the information content cannot be used with any high degree of confidence. To address this issue, data mining has been recognized as the most promising enabling technology for improving decision-making processes, providing the right information at the right moment to the right decision-maker. This Special Issue is focused on emerging methodologies for data mining in smart grids. In this area, it addresses many relevant topics, ranging from methods for uncertainty management, to advanced dispatching. This Special Issue not only focuses on methodological breakthroughs and roadmaps in implementing the methodology, but also presents the much-needed sharing of the best practices. Topics include, but are not limited to, the following: Fuzziness in smart grids computing Emerging techniques for renewable energy forecasting Robust and proactive solution of optimal smart grids operation Fuzzy-based smart grids monitoring and control frameworks Granular computing for uncertainty management in smart grids Self-organizing and decentralized paradigms for information processin

    Modeling HIV Drug Resistance

    Get PDF
    Despite the development of antiviral drugs and the optimization of therapies, the emergence of drug resistance remains one of the most challenging issues for successful treatments of HIV-infected patients. The availability of massive HIV drug resistance data provides us not only exciting opportunities for HIV research, but also the curse of high dimensionality. We provide several statistical learning methods in this thesis to analyze sequence data from different perspectives. We propose a hierarchical random graph approach to identify possible covariation among residue-specific mutations. Viral progression pathways were inferred using an EM-like algorithm in literature, and we present a normalization method to improve the accuracy of parameter estimations. To predict the drug resistance from genotypic data, we also build a novel regression model utilizing the information from progression pathways. Finally, we introduce a computational approach to determine viral fitness, for which our initial computational results closely agree with experimental results. Work on two other topics are presented in the Appendices. Latent class models find applications in several areas including social and biological sciences. Finding explicit maximum likelihood estimation has been elusive. We present a positive solution to a conjecture on a special latent class model proposed by Bernd Sturmfels from UC Berkeley. Monomial ideals provide ubiquitous links between combinatorics and commutative algebra. Irreducible decomposition of monomial ideals is a basic computational problem and it finds applications in several areas. We present two algorithms for finding irreducible decomposition of monomial ideals

    Sequence learning recodes cortical representations instead of strengthening initial ones.

    Get PDF
    We contrast two computational models of sequence learning. The associative learner posits that learning proceeds by strengthening existing association weights. Alternatively, recoding posits that learning creates new and more efficient representations of the learned sequences. Importantly, both models propose that humans act as optimal learners but capture different statistics of the stimuli in their internal model. Furthermore, these models make dissociable predictions as to how learning changes the neural representation of sequences. We tested these predictions by using fMRI to extract neural activity patterns from the dorsal visual processing stream during a sequence recall task. We observed that only the recoding account can explain the similarity of neural activity patterns, suggesting that participants recode the learned sequences using chunks. We show that associative learning can theoretically store only very limited number of overlapping sequences, such as common in ecological working memory tasks, and hence an efficient learner should recode initial sequence representations
    • …
    corecore