12,740 research outputs found

    Discrete multitone modulation with principal component filter banks

    Get PDF
    Discrete multitone (DMT) modulation is an attractive method for communication over a nonflat channel with possibly colored noise. The uniform discrete Fourier transform (DFT) filter bank and cosine modulated filter bank have in the past been used in this system because of low complexity. We show in this paper that principal component filter banks (PCFB) which are known to be optimal for data compression and denoising applications, are also optimal for a number of criteria in DMT modulation communication. For example, the PCFB of the effective channel noise power spectrum (noise psd weighted by the inverse of the channel gain) is optimal for DMT modulation in the sense of maximizing bit rate for fixed power and error probabilities. We also establish an optimality property of the PCFB when scalar prefilters and postfilters are used around the channel. The difference between the PCFB and a traditional filter bank such as the brickwall filter bank or DFT filter bank is significant for effective power spectra which depart considerably from monotonicity. The twisted pair channel with its bridged taps, next and fext noises, and AM interference, therefore appears to be a good candidate for the application of a PCFB. This is demonstrated with the help of numerical results for the case of the ADSL channel

    Theory of optimal orthonormal subband coders

    Get PDF
    The theory of the orthogonal transform coder and methods for its optimal design have been known for a long time. We derive a set of necessary and sufficient conditions for the coding-gain optimality of an orthonormal subband coder for given input statistics. We also show how these conditions can be satisfied by the construction of a sequence of optimal compaction filters one at a time. Several theoretical properties of optimal compaction filters and optimal subband coders are then derived, especially pertaining to behavior as the number of subbands increases. Significant theoretical differences between optimum subband coders, transform coders, and predictive coders are summarized. Finally, conditions are presented under which optimal orthonormal subband coders yield as much coding gain as biorthogonal ones for a fixed number of subbands

    Statistically optimum pre- and postfiltering in quantization

    Get PDF
    We consider the optimization of pre- and postfilters surrounding a quantization system. The goal is to optimize the filters such that the mean square error is minimized under the key constraint that the quantization noise variance is directly proportional to the variance of the quantization system input. Unlike some previous work, the postfilter is not restricted to be the inverse of the prefilter. With no order constraint on the filters, we present closed-form solutions for the optimum pre- and postfilters when the quantization system is a uniform quantizer. Using these optimum solutions, we obtain a coding gain expression for the system under study. The coding gain expression clearly indicates that, at high bit rates, there is no loss in generality in restricting the postfilter to be the inverse of the prefilter. We then repeat the same analysis with first-order pre- and postfilters in the form 1+αz-1 and 1/(1+γz^-1 ). In specific, we study two cases: 1) FIR prefilter, IIR postfilter and 2) IIR prefilter, FIR postfilter. For each case, we obtain a mean square error expression, optimize the coefficients α and γ and provide some examples where we compare the coding gain performance with the case of α=γ. In the last section, we assume that the quantization system is an orthonormal perfect reconstruction filter bank. To apply the optimum preand postfilters derived earlier, the output of the filter bank must be wide-sense stationary WSS which, in general, is not true. We provide two theorems, each under a different set of assumptions, that guarantee the wide sense stationarity of the filter bank output. We then propose a suboptimum procedure to increase the coding gain of the orthonormal filter bank

    Partially reconfigurable TVWS transceiver for use in UK and US markets

    Get PDF
    With more and more countries opening up sections of unlicensed spectrum for use by TV White Space (TVWS) devices, the prospect of building a device capable of operating in more than one world region is appealing. The difficulty is that the locations of TVWS bands within the radio spectrum are not globally harmonised. With this problem in mind, the purpose of this paper is to present a TVWS transceiver design which is capable of being reconfigured to operate in both the UK and US spectrum. We present three different configurations: one covering the UK TVWS spectrum and the remaining two covering the various locations of the US TVWS bands

    Results on optimal biorthogonal filter banks

    Get PDF
    Optimization of filter banks for specific input statistics has been of interest in the theory and practice of subband coding. For the case of orthonormal filter banks with infinite order and uniform decimation, the problem has been completely solved in recent years. For the case of biorthogonal filter banks, significant progress has been made recently, although a number of issues still remain to be addressed. In this paper we briefly review the orthonormal case, and then present several new results for the biorthogonal case. All discussions pertain to the infinite order (ideal filter) case. The current status of research as well as some of the unsolved problems are described

    Oversampling PCM techniques and optimum noise shapers for quantizing a class of nonbandlimited signals

    Get PDF
    We consider the efficient quantization of a class of nonbandlimited signals, namely, the class of discrete-time signals that can be recovered from their decimated version. The signals are modeled as the output of a single FIR interpolation filter (single band model) or, more generally, as the sum of the outputs of L FIR interpolation filters (multiband model). These nonbandlimited signals are oversampled, and it is therefore reasonable to expect that we can reap the same benefits of well-known efficient A/D techniques that apply only to bandlimited signals. We first show that we can obtain a great reduction in the quantization noise variance due to the oversampled nature of the signals. We can achieve a substantial decrease in bit rate by appropriately decimating the signals and then quantizing them. To further increase the effective quantizer resolution, noise shaping is introduced by optimizing prefilters and postfilters around the quantizer. We start with a scalar time-invariant quantizer and study two important cases of linear time invariant (LTI) filters, namely, the case where the postfilter is the inverse of the prefilter and the more general case where the postfilter is independent from the prefilter. Closed form expressions for the optimum filters and average minimum mean square error are derived in each case for both the single band and multiband models. The class of noise shaping filters and quantizers is then enlarged to include linear periodically time varying (LPTV)M filters and periodically time-varying quantizers of period M. We study two special cases in great detail

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Get PDF
    We propose a novel framework for a new class of two-channel biorthogonal filter banks. The framework covers two useful subclasses: i) causal stable IIR filter banks. ii) linear phase FIR filter banks. There exists a very efficient structurally perfect reconstruction implementation for such a class. Filter banks of high frequency selectivity can be achieved by using the proposed framework with low complexity. The properties of such a class are discussed in detail. The design of the analysis/synthesis systems reduces to the design of a single transfer function. Very simple design methods are given both for FIR and IIR cases. Zeros of arbitrary multiplicity at aliasing frequency can be easily imposed, for the purpose of generating wavelets with regularity property. In the IIR case, two new classes of IIR maximally flat filters different from Butterworth filters are introduced. The filter coefficients are given in closed form. The wavelet bases corresponding to the biorthogonal systems are generated. the authors also provide a novel mapping of the proposed 1-D framework into 2-D. The mapping preserves the following: i) perfect reconstruction; ii) stability in the IIR case; iii) linear phase in the FIR case; iv) zeros at aliasing frequency; v) frequency characteristic of the filters

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field
    corecore