1,357 research outputs found

    Multi-Cell Random Beamforming: Achievable Rate and Degrees of Freedom Region

    Full text link
    Random beamforming (RBF) is a practically favourable transmission scheme for multiuser multi-antenna downlink systems since it requires only partial channel state information (CSI) at the transmitter. Under the conventional single-cell setup, RBF is known to achieve the optimal sum-capacity scaling law as the number of users goes to infinity, thanks to the multiuser diversity enabled transmission scheduling that virtually eliminates the intra-cell interference. In this paper, we extend the study of RBF to a more practical multi-cell downlink system with single-antenna receivers subject to the additional inter-cell interference (ICI). First, we consider the case of finite signal-to-noise ratio (SNR) at each receiver. We derive a closed-form expression of the achievable sum-rate with the multi-cell RBF, based upon which we show an asymptotic sum-rate scaling law as the number of users goes to infinity. Next, we consider the high-SNR regime and for tractable analysis assume that the number of users in each cell scales in a certain order with the per-cell SNR. Under this setup, we characterize the achievable degrees of freedom (DoF) for the single-cell case with RBF. Then we extend the analysis to the multi-cell RBF case by characterizing the DoF region. It is shown that the DoF region characterization provides useful guideline on how to design a cooperative multi-cell RBF system to achieve optimal throughput tradeoffs among different cells. Furthermore, our results reveal that the multi-cell RBF scheme achieves the "interference-free DoF" region upper bound for the multi-cell system, provided that the per-cell number of users has a sufficiently large scaling order with the SNR. Our result thus confirms the optimality of multi-cell RBF in this regime even without the complete CSI at the transmitter, as compared to other full-CSI requiring transmission schemes such as interference alignment.Comment: 28 pages, 6 figures, to appear in IEEE Transactions of Signal Processing. This work was presented in part at IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 25-30, 2012. The authors are with the Department of Electrical and Computer Engineering, National University of Singapore (emails: {hieudn, elezhang, elehht}@nus.edu.sg

    Throughput Scaling of Wireless Networks With Random Connections

    Full text link
    This work studies the throughput scaling laws of ad hoc wireless networks in the limit of a large number of nodes. A random connections model is assumed in which the channel connections between the nodes are drawn independently from a common distribution. Transmitting nodes are subject to an on-off strategy, and receiving nodes employ conventional single-user decoding. The following results are proven: 1) For a class of connection models with finite mean and variance, the throughput scaling is upper-bounded by O(n1/3)O(n^{1/3}) for single-hop schemes, and O(n1/2)O(n^{1/2}) for two-hop (and multihop) schemes. 2) The Θ(n1/2)\Theta (n^{1/2}) throughput scaling is achievable for a specific connection model by a two-hop opportunistic relaying scheme, which employs full, but only local channel state information (CSI) at the receivers, and partial CSI at the transmitters. 3) By relaxing the constraints of finite mean and variance of the connection model, linear throughput scaling Θ(n)\Theta (n) is achievable with Pareto-type fading models.Comment: 13 pages, 4 figures, To appear in IEEE Transactions on Information Theor

    Linear Precoding and Equalization for Network MIMO with Partial Cooperation

    Full text link
    A cellular multiple-input multiple-output (MIMO) downlink system is studied in which each base station (BS) transmits to some of the users, so that each user receives its intended signal from a subset of the BSs. This scenario is referred to as network MIMO with partial cooperation, since only a subset of the BSs are able to coordinate their transmission towards any user. The focus of this paper is on the optimization of linear beamforming strategies at the BSs and at the users for network MIMO with partial cooperation. Individual power constraints at the BSs are enforced, along with constraints on the number of streams per user. It is first shown that the system is equivalent to a MIMO interference channel with generalized linear constraints (MIMO-IFC-GC). The problems of maximizing the sum-rate(SR) and minimizing the weighted sum mean square error (WSMSE) of the data estimates are non-convex, and suboptimal solutions with reasonable complexity need to be devised. Based on this, suboptimal techniques that aim at maximizing the sum-rate for the MIMO-IFC-GC are reviewed from recent literature and extended to the MIMO-IFC-GC where necessary. Novel designs that aim at minimizing the WSMSE are then proposed. Extensive numerical simulations are provided to compare the performance of the considered schemes for realistic cellular systems.Comment: 13 pages, 5 figures, published in IEEE Transactions on Vehicular Technology, June 201

    Multiuser Diversity for Secrecy Communications Using Opportunistic Jammer Selection -- Secure DoF and Jammer Scaling Law

    Full text link
    In this paper, we propose opportunistic jammer selection in a wireless security system for increasing the secure degrees of freedom (DoF) between a transmitter and a legitimate receiver (say, Alice and Bob). There is a jammer group consisting of SS jammers among which Bob selects KK jammers. The selected jammers transmit independent and identically distributed Gaussian signals to hinder the eavesdropper (Eve). Since the channels of Bob and Eve are independent, we can select the jammers whose jamming channels are aligned at Bob, but not at Eve. As a result, Eve cannot obtain any DoF unless it has more than KNjKN_j receive antennas, where NjN_j is the number of jammer's transmit antenna each, and hence KNjKN_j can be regarded as defensible dimensions against Eve. For the jamming signal alignment at Bob, we propose two opportunistic jammer selection schemes and find the scaling law of the required number of jammers for target secure DoF by a geometrical interpretation of the received signals.Comment: Accepted with minor revisions, IEEE Trans. on Signal Processin

    Symbol-Level Multiuser MISO Precoding for Multi-level Adaptive Modulation

    Get PDF
    Symbol-level precoding is a new paradigm for multiuser downlink systems which aims at creating constructive interference among the transmitted data streams. This can be enabled by designing the precoded signal of the multiantenna transmitter on a symbol level, taking into account both channel state information and data symbols. Previous literature has studied this paradigm for MPSK modulations by addressing various performance metrics, such as power minimization and maximization of the minimum rate. In this paper, we extend this to generic multi-level modulations i.e. MQAM and APSK by establishing connection to PHY layer multicasting with phase constraints. Furthermore, we address adaptive modulation schemes which are crucial in enabling the throughput scaling of symbol-level precoded systems. In this direction, we design signal processing algorithms for minimizing the required power under per-user SINR or goodput constraints. Extensive numerical results show that the proposed algorithm provides considerable power and energy efficiency gains, while adapting the employed modulation scheme to match the requested data rate
    corecore