19,566 research outputs found

    Spectral/hp element methods: recent developments, applications, and perspectives

    Get PDF
    The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate C0-continuous expansions. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed

    Multi-Adaptive Time-Integration

    Full text link
    Time integration of ODEs or time-dependent PDEs with required resolution of the fastest time scales of the system, can be very costly if the system exhibits multiple time scales of different magnitudes. If the different time scales are localised to different components, corresponding to localisation in space for a PDE, efficient time integration thus requires that we use different time steps for different components. We present an overview of the multi-adaptive Galerkin methods mcG(q) and mdG(q) recently introduced in a series of papers by the author. In these methods, the time step sequence is selected individually and adaptively for each component, based on an a posteriori error estimate of the global error. The multi-adaptive methods require the solution of large systems of nonlinear algebraic equations which are solved using explicit-type iterative solvers (fixed point iteration). If the system is stiff, these iterations may fail to converge, corresponding to the well-known fact that standard explicit methods are inefficient for stiff systems. To resolve this problem, we present an adaptive strategy for explicit time integration of stiff ODEs, in which the explicit method is adaptively stabilised by a small number of small, stabilising time steps

    High-order DG solvers for under-resolved turbulent incompressible flows: A comparison of L2L^2 and HH(div) methods

    Get PDF
    The accurate numerical simulation of turbulent incompressible flows is a challenging topic in computational fluid dynamics. For discretisation methods to be robust in the under-resolved regime, mass conservation as well as energy stability are key ingredients to obtain robust and accurate discretisations. Recently, two approaches have been proposed in the context of high-order discontinuous Galerkin (DG) discretisations that address these aspects differently. On the one hand, standard L2L^2-based DG discretisations enforce mass conservation and energy stability weakly by the use of additional stabilisation terms. On the other hand, pointwise divergence-free H(div)H(\operatorname{div})-conforming approaches ensure exact mass conservation and energy stability by the use of tailored finite element function spaces. The present work raises the question whether and to which extent these two approaches are equivalent when applied to under-resolved turbulent flows. This comparative study highlights similarities and differences of these two approaches. The numerical results emphasise that both discretisation strategies are promising for under-resolved simulations of turbulent flows due to their inherent dissipation mechanisms.Comment: 24 pages, 13 figure

    Multiphase modelling of vascular tumour growth in two spatial dimensions

    Get PDF
    In this paper we present a continuum mathematical model of vascular tumour growth which is based on a multiphase framework in which the tissue is decomposed into four distinct phases and the principles of conservation of mass and momentum are applied to the normal/healthy cells, tumour cells, blood vessels and extracellular material. The inclusion of a diffusible nutrient, supplied by the blood vessels, allows the vasculature to have a nonlocal influence on the other phases. Two-dimensional computational simulations are carried out on unstructured, triangular meshes to allow a natural treatment of irregular geometries, and the tumour boundary is captured as a diffuse interface on this mesh, thereby obviating the need to explicitly track the (potentially highly irregular and ill-defined) tumour boundary. A hybrid finite volume/finite element algorithm is used to discretise the continuum model: the application of a conservative, upwind, finite volume scheme to the hyperbolic mass balance equations and a finite element scheme with a stable element pair to the generalised Stokes equations derived from momentum balance, leads to a robust algorithm which does not use any form of artificial stabilisation. The use of a matrix-free Newton iteration with a finite element scheme for the nutrient reaction-diffusion equations allows full nonlinearity in the source terms of the mathematical model. Numerical simulations reveal that this four-phase model reproduces the characteristic pattern of tumour growth in which a necrotic core forms behind an expanding rim of well-vascularised proliferating tumour cells. The simulations consistently predict linear tumour growth rates. The dependence of both the speed with which the tumour grows and the irregularity of the invading tumour front on the model parameters are investigated

    Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media

    Full text link
    This paper proposes to address the issue of complexity reduction for the numerical simulation of multiscale media in a quasi-periodic setting. We consider a stationary elliptic diffusion equation defined on a domain DD such that D\overline{D} is the union of cells {Di}iI\{\overline{D_i}\}_{i\in I} and we introduce a two-scale representation by identifying any function v(x)v(x) defined on DD with a bi-variate function v(i,y)v(i,y), where iIi \in I relates to the index of the cell containing the point xx and yYy \in Y relates to a local coordinate in a reference cell YY. We introduce a weak formulation of the problem in a broken Sobolev space V(D)V(D) using a discontinuous Galerkin framework. The problem is then interpreted as a tensor-structured equation by identifying V(D)V(D) with a tensor product space RIV(Y)\mathbb{R}^I \otimes V(Y) of functions defined over the product set I×YI\times Y. Tensor numerical methods are then used in order to exploit approximability properties of quasi-periodic solutions by low-rank tensors.Comment: Changed the choice of test spaces V(D) and X (with regard to regularity) and the argumentation thereof. Corrected proof of proposition 3. Corrected wrong multiplicative factor in proposition 4 and its proof (was 2 instead of 1). Added remark 6 at the end of section 2. Extended remark 7. Added references. Some minor improvements (typos, typesetting

    Higher-order compatible finite element schemes for the nonlinear rotating shallow water equations on the sphere

    Full text link
    We describe a compatible finite element discretisation for the shallow water equations on the rotating sphere, concentrating on integrating consistent upwind stabilisation into the framework. Although the prognostic variables are velocity and layer depth, the discretisation has a diagnostic potential vorticity that satisfies a stable upwinded advection equation through a Taylor-Galerkin scheme; this provides a mechanism for dissipating enstrophy at the gridscale whilst retaining optimal order consistency. We also use upwind discontinuous Galerkin schemes for the transport of layer depth. These transport schemes are incorporated into a semi-implicit formulation that is facilitated by a hybridisation method for solving the resulting mixed Helmholtz equation. We illustrate our discretisation with some standard rotating sphere test problems.Comment: accepted versio
    corecore