951 research outputs found

    The Application of Blind Source Separation to Feature Decorrelation and Normalizations

    Get PDF
    We apply a Blind Source Separation BSS algorithm to the decorrelation of Mel-warped cepstra. The observed cepstra are modeled as a convolutive mixture of independent source cepstra. The algorithm aims to minimize a cross-spectral correlation at different lags to reconstruct the source cepstra. Results show that using "independent" cepstra as features leads to a reduction in the WER.Finally, we present three different enhancements to the BSS algorithm. We also present some results of these deviations of the original algorithm

    Enhanced independent vector analysis for audio separation in a room environment

    Get PDF
    Independent vector analysis (IVA) is studied as a frequency domain blind source separation method, which can theoretically avoid the permutation problem by retaining the dependency between different frequency bins of the same source vector while removing the dependency between different source vectors. This thesis focuses upon improving the performance of independent vector analysis when it is used to solve the audio separation problem in a room environment. A specific stability problem of IVA, i.e. the block permutation problem, is identified and analyzed. Then a robust IVA method is proposed to solve this problem by exploiting the phase continuity of the unmixing matrix. Moreover, an auxiliary function based IVA algorithm with an overlapped chain type source prior is proposed as well to mitigate this problem. Then an informed IVA scheme is proposed which combines the geometric information of the sources from video to solve the problem by providing an intelligent initialization for optimal convergence. The proposed informed IVA algorithm can also achieve a faster convergence in terms of iteration numbers and better separation performance. A pitch based evaluation method is defined to judge the separation performance objectively when the information describing the mixing matrix and sources is missing. In order to improve the separation performance of IVA, an appropriate multivariate source prior is needed to better preserve the dependency structure within the source vectors. A particular multivariate generalized Gaussian distribution is adopted as the source prior. The nonlinear score function derived from this proposed source prior contains the fourth order relationships between different frequency bins, which provides a more informative and stronger dependency structure compared with the original IVA algorithm and thereby improves the separation performance. Copula theory is a central tool to model the nonlinear dependency structure. The t copula is proposed to describe the dependency structure within the frequency domain speech signals due to its tail dependency property, which means if one variable has an extreme value, other variables are expected to have extreme values. A multivariate student's t distribution constructed by using a t copula with the univariate student's t marginal distribution is proposed as the source prior. Then the IVA algorithm with the proposed source prior is derived. The proposed algorithms are tested with real speech signals in different reverberant room environments both using modelled room impulse response and real room recordings. State-of-the-art criteria are used to evaluate the separation performance, and the experimental results confirm the advantage of the proposed algorithms

    Multimodal methods for blind source separation of audio sources

    Get PDF
    The enhancement of the performance of frequency domain convolutive blind source separation (FDCBSS) techniques when applied to the problem of separating audio sources recorded in a room environment is the focus of this thesis. This challenging application is termed the cocktail party problem and the ultimate aim would be to build a machine which matches the ability of a human being to solve this task. Human beings exploit both their eyes and their ears in solving this task and hence they adopt a multimodal approach, i.e. they exploit both audio and video modalities. New multimodal methods for blind source separation of audio sources are therefore proposed in this work as a step towards realizing such a machine. The geometry of the room environment is initially exploited to improve the separation performance of a FDCBSS algorithm. The positions of the human speakers are monitored by video cameras and this information is incorporated within the FDCBSS algorithm in the form of constraints added to the underlying cross-power spectral density matrix-based cost function which measures separation performance. [Continues.

    Sparsity and adaptivity for the blind separation of partially correlated sources

    Get PDF
    Blind source separation (BSS) is a very popular technique to analyze multichannel data. In this context, the data are modeled as the linear combination of sources to be retrieved. For that purpose, standard BSS methods all rely on some discrimination principle, whether it is statistical independence or morphological diversity, to distinguish between the sources. However, dealing with real-world data reveals that such assumptions are rarely valid in practice: the signals of interest are more likely partially correlated, which generally hampers the performances of standard BSS methods. In this article, we introduce a novel sparsity-enforcing BSS method coined Adaptive Morphological Component Analysis (AMCA), which is designed to retrieve sparse and partially correlated sources. More precisely, it makes profit of an adaptive re-weighting scheme to favor/penalize samples based on their level of correlation. Extensive numerical experiments have been carried out which show that the proposed method is robust to the partial correlation of sources while standard BSS techniques fail. The AMCA algorithm is evaluated in the field of astrophysics for the separation of physical components from microwave data.Comment: submitted to IEEE Transactions on signal processin

    Efficient Multiband Algorithms for Blind Source Separation

    Get PDF
    The problem of blind separation refers to recovering original signals, called source signals, from the mixed signals, called observation signals, in a reverberant environment. The mixture is a function of a sequence of original speech signals mixed in a reverberant room. The objective is to separate mixed signals to obtain the original signals without degradation and without prior information of the features of the sources. The strategy used to achieve this objective is to use multiple bands that work at a lower rate, have less computational cost and a quicker convergence than the conventional scheme. Our motivation is the competitive results of unequal-passbands scheme applications, in terms of the convergence speed. The objective of this research is to improve unequal-passbands schemes by improving the speed of convergence and reducing the computational cost. The first proposed work is a novel maximally decimated unequal-passbands scheme.This scheme uses multiple bands that make it work at a reduced sampling rate, and low computational cost. An adaptation approach is derived with an adaptation step that improved the convergence speed. The performance of the proposed scheme was measured in different ways. First, the mean square errors of various bands are measured and the results are compared to a maximally decimated equal-passbands scheme, which is currently the best performing method. The results show that the proposed scheme has a faster convergence rate than the maximally decimated equal-passbands scheme. Second, when the scheme is tested for white and coloured inputs using a low number of bands, it does not yield good results; but when the number of bands is increased, the speed of convergence is enhanced. Third, the scheme is tested for quick changes. It is shown that the performance of the proposed scheme is similar to that of the equal-passbands scheme. Fourth, the scheme is also tested in a stationary state. The experimental results confirm the theoretical work. For more challenging scenarios, an unequal-passbands scheme with over-sampled decimation is proposed; the greater number of bands, the more efficient the separation. The results are compared to the currently best performing method. Second, an experimental comparison is made between the proposed multiband scheme and the conventional scheme. The results show that the convergence speed and the signal-to-interference ratio of the proposed scheme are higher than that of the conventional scheme, and the computation cost is lower than that of the conventional scheme
    corecore