139 research outputs found

    Lambek vs. Lambek: Functorial Vector Space Semantics and String Diagrams for Lambek Calculus

    Full text link
    The Distributional Compositional Categorical (DisCoCat) model is a mathematical framework that provides compositional semantics for meanings of natural language sentences. It consists of a computational procedure for constructing meanings of sentences, given their grammatical structure in terms of compositional type-logic, and given the empirically derived meanings of their words. For the particular case that the meaning of words is modelled within a distributional vector space model, its experimental predictions, derived from real large scale data, have outperformed other empirically validated methods that could build vectors for a full sentence. This success can be attributed to a conceptually motivated mathematical underpinning, by integrating qualitative compositional type-logic and quantitative modelling of meaning within a category-theoretic mathematical framework. The type-logic used in the DisCoCat model is Lambek's pregroup grammar. Pregroup types form a posetal compact closed category, which can be passed, in a functorial manner, on to the compact closed structure of vector spaces, linear maps and tensor product. The diagrammatic versions of the equational reasoning in compact closed categories can be interpreted as the flow of word meanings within sentences. Pregroups simplify Lambek's previous type-logic, the Lambek calculus, which has been extensively used to formalise and reason about various linguistic phenomena. The apparent reliance of the DisCoCat on pregroups has been seen as a shortcoming. This paper addresses this concern, by pointing out that one may as well realise a functorial passage from the original type-logic of Lambek, a monoidal bi-closed category, to vector spaces, or to any other model of meaning organised within a monoidal bi-closed category. The corresponding string diagram calculus, due to Baez and Stay, now depicts the flow of word meanings.Comment: 29 pages, pending publication in Annals of Pure and Applied Logi

    An alternative Gospel of structure: order, composition, processes

    Full text link
    We survey some basic mathematical structures, which arguably are more primitive than the structures taught at school. These structures are orders, with or without composition, and (symmetric) monoidal categories. We list several `real life' incarnations of each of these. This paper also serves as an introduction to these structures and their current and potentially future uses in linguistics, physics and knowledge representation.Comment: Introductory chapter to C. Heunen, M. Sadrzadeh, and E. Grefenstette. Quantum Physics and Linguistics: A Compositional, Diagrammatic Discourse. Oxford University Press, 201

    Quantale Modules and their Operators, with Applications

    Full text link
    The central topic of this work is the categories of modules over unital quantales. The main categorical properties are established and a special class of operators, called Q-module transforms, is defined. Such operators - that turn out to be precisely the homomorphisms between free objects in those categories - find concrete applications in two different branches of image processing, namely fuzzy image compression and mathematical morphology

    Two-valued states on Baer ∗^*-semigroups

    Get PDF
    In this paper we develop an algebraic framework that allows us to extend families of two-valued states on orthomodular lattices to Baer ∗^*-semigroups. We apply this general approach to study the full class of two-valued states and the subclass of Jauch-Piron two-valued states on Baer ∗^*-semigroups.Comment: Reports on mathematical physics (accepted 2013

    Residuated structures and orthomodular lattices

    Get PDF
    The variety of (pointed) residuated lattices includes a vast proportion of the classes of algebras that are relevant for algebraic logic, e.g., ℓ-groups, Heyting algebras, MV-algebras, or De Morgan monoids. Among the outliers, one counts orthomodular lattices and other varieties of quantum algebras. We suggest a common framework—pointed left-residuated ℓ-groupoids—where residuated structures and quantum structures can all be accommodated. We investigate the lattice of subvarieties of pointed left-residuated ℓ-groupoids, their ideals, and develop a theory of left nuclei. Finally, we extend some parts of the theory of join-completions of residuated ℓ-groupoids to the left-residuated case, giving a new proof of MacLaren’s theorem for orthomodular lattices
    • …
    corecore