402 research outputs found

    Adaptive Cut Generation Algorithm for Improved Linear Programming Decoding of Binary Linear Codes

    Full text link
    Linear programming (LP) decoding approximates maximum-likelihood (ML) decoding of a linear block code by relaxing the equivalent ML integer programming (IP) problem into a more easily solved LP problem. The LP problem is defined by a set of box constraints together with a set of linear inequalities called "parity inequalities" that are derived from the constraints represented by the rows of a parity-check matrix of the code and can be added iteratively and adaptively. In this paper, we first derive a new necessary condition and a new sufficient condition for a violated parity inequality constraint, or "cut," at a point in the unit hypercube. Then, we propose a new and effective algorithm to generate parity inequalities derived from certain additional redundant parity check (RPC) constraints that can eliminate pseudocodewords produced by the LP decoder, often significantly improving the decoder error-rate performance. The cut-generating algorithm is based upon a specific transformation of an initial parity-check matrix of the linear block code. We also design two variations of the proposed decoder to make it more efficient when it is combined with the new cut-generating algorithm. Simulation results for several low-density parity-check (LDPC) codes demonstrate that the proposed decoding algorithms significantly narrow the performance gap between LP decoding and ML decoding

    Mathematical Programming Decoding of Binary Linear Codes: Theory and Algorithms

    Full text link
    Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.Comment: 17 pages, submitted to the IEEE Transactions on Information Theory. Published July 201

    On the Saddle-point Solution and the Large-Coalition Asymptotics of Fingerprinting Games

    Full text link
    We study a fingerprinting game in which the number of colluders and the collusion channel are unknown. The encoder embeds fingerprints into a host sequence and provides the decoder with the capability to trace back pirated copies to the colluders. Fingerprinting capacity has recently been derived as the limit value of a sequence of maximin games with mutual information as their payoff functions. However, these games generally do not admit saddle-point solutions and are very hard to solve numerically. Here under the so-called Boneh-Shaw marking assumption, we reformulate the capacity as the value of a single two-person zero-sum game, and show that it is achieved by a saddle-point solution. If the maximal coalition size is k and the fingerprinting alphabet is binary, we show that capacity decays quadratically with k. Furthermore, we prove rigorously that the asymptotic capacity is 1/(k^2 2ln2) and we confirm our earlier conjecture that Tardos' choice of the arcsine distribution asymptotically maximizes the mutual information payoff function while the interleaving attack minimizes it. Along with the asymptotic behavior, numerical solutions to the game for small k are also presented.Comment: submitted to IEEE Trans. on Information Forensics and Securit

    Partial permutation decoding for binary linear Hadamard codes

    Get PDF
    Permutation decoding is a technique which involves finding a subset S, called PD-set, of the permutation automorphism group PAut(C) of a code C in order to assist in decoding. A method to obtain s-PD-sets of size s + 1 for partial permutation decoding for the binary linear Hadamard codes H m of length 2 m , for all m ≥ 4 and 1 < s ≤ (2 m − m − 1)/(1 + m) , is described. Moreover, a recursive construction to obtain s-PD-sets of size s + 1 for H m+1 of length 2 m+1 , from a given s-PD-set of the same size for the Hadamard code of half length H m is also established
    • …
    corecore