616 research outputs found

    Decoding non-Abelian topological quantum memories

    Full text link
    The possibility of quantum computation using non-Abelian anyons has been considered for over a decade. However the question of how to obtain and process information about what errors have occurred in order to negate their effects has not yet been considered. This is in stark contrast with quantum computation proposals for Abelian anyons, for which decoding algorithms have been tailor-made for many topological error-correcting codes and error models. Here we address this issue by considering the properties of non-Abelian error correction in general. We also choose a specific anyon model and error model to probe the problem in more detail. The anyon model is the charge submodel of D(S3)D(S_3). This shares many properties with important models such as the Fibonacci anyons, making our method applicable in general. The error model is a straightforward generalization of those used in the case of Abelian anyons for initial benchmarking of error correction methods. It is found that error correction is possible under a threshold value of 7%7 \% for the total probability of an error on each physical spin. This is remarkably comparable with the thresholds for Abelian models

    List-Decoding Homomorphism Codes with Arbitrary Codomains

    Get PDF
    The codewords of the homomorphism code aHom(G,H) are the affine homomorphisms between two finite groups, G and H, generalizing Hadamard codes. Following the work of Goldreich-Levin (1989), Grigorescu et al. (2006), Dinur et al. (2008), and Guo and Sudan (2014), we further expand the range of groups for which local list-decoding is possible up to mindist, the minimum distance of the code. In particular, for the first time, we do not require either G or H to be solvable. Specifically, we demonstrate a poly(1/epsilon) bound on the list size, i. e., on the number of codewords within distance (mindist-epsilon) from any received word, when G is either abelian or an alternating group, and H is an arbitrary (finite or infinite) group. We conjecture that a similar bound holds for all finite simple groups as domains; the alternating groups serve as the first test case. The abelian vs. arbitrary result permits us to adapt previous techniques to obtain efficient local list-decoding for this case. We also obtain efficient local list-decoding for the permutation representations of alternating groups (the codomain is a symmetric group) under the restriction that the domain G=A_n is paired with codomain H=S_m satisfying m < 2^{n-1}/sqrt{n}. The limitations on the codomain in the latter case arise from severe technical difficulties stemming from the need to solve the homomorphism extension (HomExt) problem in certain cases; these are addressed in a separate paper (Wuu 2018). We introduce an intermediate "semi-algorithmic" model we call Certificate List-Decoding that bypasses the HomExt bottleneck and works in the alternating vs. arbitrary setting. A certificate list-decoder produces partial homomorphisms that uniquely extend to the homomorphisms in the list. A homomorphism extender applied to a list of certificates yields the desired list

    Representation theory for high-rate multiple-antenna code design

    Get PDF
    Multiple antennas can greatly increase the data rate and reliability of a wireless communication link in a fading environment, but the practical success of using multiple antennas depends crucially on our ability to design high-rate space-time constellations with low encoding and decoding complexity. It has been shown that full transmitter diversity, where the constellation is a set of unitary matrices whose differences have nonzero determinant, is a desirable property for good performance. We use the powerful theory of fixed-point-free groups and their representations to design high-rate constellations with full diversity. Furthermore, we thereby classify all full-diversity constellations that form a group, for all rates and numbers of transmitter antennas. The group structure makes the constellations especially suitable for differential modulation and low-complexity decoding algorithms. The classification also reveals that the number of different group structures with full diversity is very limited when the number of transmitter antennas is large and odd. We, therefore, also consider extensions of the constellation designs to nongroups. We conclude by showing that many of our designed constellations perform excellently on both simulated and real wireless channels

    A Family of Quantum Stabilizer Codes Based on the Weyl Commutation Relations over a Finite Field

    Get PDF
    Using the Weyl commutation relations over a finite field we introduce a family of error-correcting quantum stabilizer codes based on a class of symmetric matrices over the finite field satisfying certain natural conditions. When the field is GF(2) the existence of a rich class of such symmetric matrices is demonstrated by a simple probabilistic argument depending on the Chernoff bound for i.i.d symmetric Bernoulli trials. If, in addition, these symmetric matrices are assumed to be circulant it is possible to obtain concrete examples by a computer program. The quantum codes thus obtained admit elegant encoding circuits.Comment: 16 pages, 2 figure

    The satisfiability threshold for random linear equations

    Full text link
    Let AA be a random m×nm\times n matrix over the finite field FqF_q with precisely kk non-zero entries per row and let yFqmy\in F_q^m be a random vector chosen independently of AA. We identify the threshold m/nm/n up to which the linear system Ax=yA x=y has a solution with high probability and analyse the geometry of the set of solutions. In the special case q=2q=2, known as the random kk-XORSAT problem, the threshold was determined by [Dubois and Mandler 2002, Dietzfelbinger et al. 2010, Pittel and Sorkin 2016], and the proof technique was subsequently extended to the cases q=3,4q=3,4 [Falke and Goerdt 2012]. But the argument depends on technically demanding second moment calculations that do not generalise to q>3q>3. Here we approach the problem from the viewpoint of a decoding task, which leads to a transparent combinatorial proof
    corecore