11,073 research outputs found

    Efficient CSL Model Checking Using Stratification

    Get PDF
    For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996. Their proof can be turned into an approximation algorithm with worse than exponential complexity. In 2000, Baier, Haverkort, Hermanns and Katoen presented an efficient polynomial-time approximation algorithm for the sublogic in which only binary until is allowed. In this paper, we propose such an efficient polynomial-time approximation algorithm for full CSL. The key to our method is the notion of stratified CTMCs with respect to the CSL property to be checked. On a stratified CTMC, the probability to satisfy a CSL path formula can be approximated by a transient analysis in polynomial time (using uniformization). We present a measure-preserving, linear-time and -space transformation of any CTMC into an equivalent, stratified one. This makes the present work the centerpiece of a broadly applicable full CSL model checker. Recently, the decision algorithm by Aziz et al. was shown to work only for stratified CTMCs. As an additional contribution, our measure-preserving transformation can be used to ensure the decidability for general CTMCs.Comment: 18 pages, preprint for LMCS. An extended abstract appeared in ICALP 201

    CSL model checking of Deterministic and Stochastic Petri Nets

    Get PDF
    Deterministic and Stochastic Petri Nets (DSPNs) are a widely used high-level formalism for modeling discrete-event systems where events may occur either without consuming time, after a deterministic time, or after an exponentially distributed time. The underlying process dened by DSPNs, under certain restrictions, corresponds to a class of Markov Regenerative Stochastic Processes (MRGP). In this paper, we investigate the use of CSL (Continuous Stochastic Logic) to express probabilistic properties, such a time-bounded until and time-bounded next, at the DSPN level. The verication of such properties requires the solution of the steady-state and transient probabilities of the underlying MRGP. We also address a number of semantic issues regarding the application of CSL on MRGP and provide numerical model checking algorithms for this logic. A prototype model checker, based on SPNica, is also described

    A machine learning approach to explore the spectra intensity pattern of peptides using tandem mass spectrometry data

    Get PDF
    Background: A better understanding of the mechanisms involved in gas-phase fragmentation of peptides is essential for the development of more reliable algorithms for high-throughput protein identification using mass spectrometry (MS). Current methodologies depend predominantly on the use of derived m/z values of fragment ions, and, the knowledge provided by the intensity information present in MS/MS spectra has not been fully exploited. Indeed spectrum intensity information is very rarely utilized in the algorithms currently in use for high-throughput protein identification. Results: In this work, a Bayesian neural network approach is employed to analyze ion intensity information present in 13878 different MS/MS spectra. The influence of a library of 35 features on peptide fragmentation is examined under different proton mobility conditions. Useful rules involved in peptide fragmentation are found and subsets of features which have significant influence on fragmentation pathway of peptides are characterised. An intensity model is built based on the selected features and the model can make an accurate prediction of the intensity patterns for given MS/MS spectra. The predictions include not only the mean values of spectra intensity but also the variances that can be used to tolerate noises and system biases within experimental MS/MS spectra. Conclusion: The intensity patterns of fragmentation spectra are informative and can be used to analyze the influence of various characteristics of fragmented peptides on their fragmentation pathway. The features with significant influence can be used in turn to predict spectra intensities. Such information can help develop more reliable algorithms for peptide and protein identification

    A Declarative Framework for Specifying and Enforcing Purpose-aware Policies

    Full text link
    Purpose is crucial for privacy protection as it makes users confident that their personal data are processed as intended. Available proposals for the specification and enforcement of purpose-aware policies are unsatisfactory for their ambiguous semantics of purposes and/or lack of support to the run-time enforcement of policies. In this paper, we propose a declarative framework based on a first-order temporal logic that allows us to give a precise semantics to purpose-aware policies and to reuse algorithms for the design of a run-time monitor enforcing purpose-aware policies. We also show the complexity of the generation and use of the monitor which, to the best of our knowledge, is the first such a result in literature on purpose-aware policies.Comment: Extended version of the paper accepted at the 11th International Workshop on Security and Trust Management (STM 2015

    DISTANCE: a framework for software measure construction.

    Get PDF
    In this paper we present a framework for software measurement that is specifically suited to satisfy the measurement needs of empirical software engineering research. The framework offers an approach to measurement that builds upon the easily imagined, detected and visualised concepts of similarity and dissimilarity between software entities. These concepts are used both to model the software attributes of interest and to define the corresponding software measures. Central to the framework is a process model that embeds constructive procedures for attribute modelling and measure construction into a goal-oriented approach to empirical software engineering studies. The underlying measurement theoretic principles of our approach ensure the construct validity of the resulting measures. The approach was tested on a popular suite of object-oriented design measures. We further show that our measure construction method compares favourably to related work.Software;

    Automated Certification of Authorisation Policy Resistance

    Full text link
    Attribute-based Access Control (ABAC) extends traditional Access Control by considering an access request as a set of pairs attribute name-value, making it particularly useful in the context of open and distributed systems, where security relevant information can be collected from different sources. However, ABAC enables attribute hiding attacks, allowing an attacker to gain some access by withholding information. In this paper, we first introduce the notion of policy resistance to attribute hiding attacks. We then propose the tool ATRAP (Automatic Term Rewriting for Authorisation Policies), based on the recent formal ABAC language PTaCL, which first automatically searches for resistance counter-examples using Maude, and then automatically searches for an Isabelle proof of resistance. We illustrate our approach with two simple examples of policies and propose an evaluation of ATRAP performances.Comment: 20 pages, 4 figures, version including proofs of the paper that will be presented at ESORICS 201
    corecore