28 research outputs found

    Process Monitoring Using Data-Based Fault Detection Techniques: Comparative Studies

    Get PDF
    Data based monitoring methods are often utilized to carry out fault detection (FD) when process models may not necessarily be available. The partial least square (PLS) and principle component analysis (PCA) are two basic types of multivariate FD methods, however, both of them can only be used to monitor linear processes. Among these extended data based methods, the kernel PCA (KPCA) and kernel PLS (KPLS) are the most well-known and widely adopted. KPCA and KPLS models have several advantages, since, they do not require nonlinear optimization, and only the solution of an eigenvalue problem is required. Also, they provide a better understanding of what kind of nonlinear features are extracted: the number of the principal components (PCs) in a feature space is fixed a priori by selecting the appropriate kernel function. Therefore, the objective of this work is to use KPCA and KPLS techniques to monitor nonlinear data. The improved FD performance of KPCA and KPLS is illustrated through two simulated examples, one using synthetic data and the other using simulated continuously stirred tank reactor (CSTR) data. The results demonstrate that both KPCA and KPLS methods are able to provide better detection compared to the linear versions

    Online statistical hypothesis test for leak detection in water distribution networks

    Get PDF
    This paper aims at improving the operation of the water distribution networks (WDN) by developing a leak monitoring framework. To do that, an online statistical hypothesis test based on leak detection is proposed. The developed technique, the so-called exponentially weighted online reduced kernel generalized likelihood ratio test (EW-ORKGLRT), is addressed so that the modeling phase is performed using the reduced kernel principal component analysis (KPCA) model, which is capable of dealing with the higher computational cost. Then the computed model is fed to EW-ORKGLRT chart for leak detection purposes. The proposed approach extends the ORKGLRT method to the one that uses exponential weights for the residuals in the moving window. It might be able to further enhance leak detection performance by detecting small and moderate leaks. The developed method’s main advantages are first dealing with the higher required computational time for detecting leaks and then updating the KPCA model according to the dynamic change of the process. The developed method’s performance is evaluated and compared to the conventional techniques using simulated WDN data. The selected performance criteria are the excellent detection rate, false alarm rate, and CPU time.Peer ReviewedPostprint (author's final draft

    Canonical variate dissimilarity analysis for process incipient fault detection

    Get PDF
    Early detection of incipient faults in industrial processes is increasingly becoming important, as these faults can slowly develop into serious abnormal events, an emergency situation, or even failure of critical equipment. Multivariate statistical process monitoring methods are currently established for abrupt fault detection. Among these, canonical variate analysis (CVA) was proven to be effective for dynamic process monitoring. However, the traditional CVA indices may not be sensitive enough for incipient faults. In this work, an extension of CVA, called the canonical variate dissimilarity analysis (CVDA), is proposed for process incipient fault detection in nonlinear dynamic processes under varying operating conditions. To handle non-Gaussian distributed data, kernel density estimation was used for computing detection limits. A CVA dissimilarity-based index has been demonstrated to outperform traditional CVA indices and other dissimilarity-based indices, namely DISSIM, RDTCSA, and GCCA, in terms of sensitivity when tested on slowly developing multiplicative and additive faults in a CSTR under closed-loop control and varying operating conditions

    A Review of Kernel Methods for Feature Extraction in Nonlinear Process Monitoring

    Get PDF
    Kernel methods are a class of learning machines for the fast recognition of nonlinear patterns in any data set. In this paper, the applications of kernel methods for feature extraction in industrial process monitoring are systematically reviewed. First, we describe the reasons for using kernel methods and contextualize them among other machine learning tools. Second, by reviewing a total of 230 papers, this work has identified 12 major issues surrounding the use of kernel methods for nonlinear feature extraction. Each issue was discussed as to why they are important and how they were addressed through the years by many researchers. We also present a breakdown of the commonly used kernel functions, parameter selection routes, and case studies. Lastly, this review provides an outlook into the future of kernel-based process monitoring, which can hopefully instigate more advanced yet practical solutions in the process industries

    Incipient Fault Detection, Diagnosis, and Prognosis using Canonical Variate Dissimilarity Analysis

    Get PDF
    Industrial process monitoring deals with three main activities, namely, fault detection, fault diagnosis, and fault prognosis. Respectively, these activities seek to answer three questions: ‘Has a fault occurred?’, ‘Where did it occur and how large?’, and ‘How will it progress in the future?’ As opposed to abrupt faults, incipient faults are those that slowly develop in time, leading ultimately to process failure or an emergency situation. A recently developed multivariate statistical tool for early detection of incipient faults under varying operating conditions is the Canonical Variate Dissimilarity Analysis (CVDA). In CVDA, a dissimilarity-based statistical index was derived to improve the detection sensitivity upon the traditional canonical variate analysis (CVA) indices. This study aims to extend the CVDA detection framework towards diagnosis and prognosis of process conditions. For diagnosis, contribution maps are used to convey the magnitude and location of the incipient fault effects, as well as their evolution in time. For prognosis, CVA state-space prediction and Kalman filtering during faulty conditions are proposed in this work. By covering the three main process monitoring activities in one framework, our work can serve as a baseline strategy for future application to large process industries

    Fault Diagnosis Of Sensor And Actuator Faults In Multi-Zone Hvac Systems

    Get PDF
    Globally, the buildings sector accounts for 30% of the energy consumption and more than 55% of the electricity demand. Specifically, the Heating, Ventilation, and Air Conditioning (HVAC) system is the most extensively operated component and it is responsible alone for 40% of the final building energy usage. HVAC systems are used to provide healthy and comfortable indoor conditions, and their main objective is to maintain the thermal comfort of occupants with minimum energy usage. HVAC systems include a considerable number of sensors, controlled actuators, and other components. They are at risk of malfunctioning or failure resulting in reduced efficiency, potential interference with the execution of supervision schemes, and equipment deterioration. Hence, Fault Diagnosis (FD) of HVAC systems is essential to improve their reliability, efficiency, and performance, and to provide preventive maintenance. In this thesis work, two neural network-based methods are proposed for sensor and actuator faults in a 3-zone HVAC system. For sensor faults, an online semi-supervised sensor data validation and fault diagnosis method using an Auto-Associative Neural Network (AANN) is developed. The method is based on the implementation of Nonlinear Principal Component Analysis (NPCA) using a Back-Propagation Neural Network (BPNN) and it demonstrates notable capability in sensor fault and inaccuracy correction, measurement noise reduction, missing sensor data replacement, and in both single and multiple sensor faults diagnosis. In addition, a novel on-line supervised multi-model approach for actuator fault diagnosis using Convolutional Neural Networks (CNNs) is developed for single actuator faults. It is based a data transformation in which the 1-dimensional data are configured into a 2-dimensional representation without the use of advanced signal processing techniques. The CNN-based actuator fault diagnosis approach demonstrates improved performance capability compared with the commonly used Machine Learning-based algorithms (i.e., Support Vector Machine and standard Neural Networks). The presented schemes are compared with other commonly used HVAC fault diagnosis methods for benchmarking and they are proven to be superior, effective, accurate, and reliable. The proposed approaches can be applied to large-scale buildings with additional zones

    Fault Detection and Diagnosis Encyclopedia for Building Systems:A Systematic Review

    Get PDF
    This review aims to provide an up-to-date, comprehensive, and systematic summary of fault detection and diagnosis (FDD) in building systems. The latter was performed through a defined systematic methodology with the final selection of 221 studies. This review provides insights into four topics: (1) glossary framework of the FDD processes; (2) a classification scheme using energy system terminologies as the starting point; (3) the data, code, and performance evaluation metrics used in the reviewed literature; and (4) future research outlooks. FDD is a known and well-developed field in the aerospace, energy, and automotive sector. Nevertheless, this study found that FDD for building systems is still at an early stage worldwide. This was evident through the ongoing development of algorithms for detecting and diagnosing faults in building systems and the inconsistent use of the terminologies and definitions. In addition, there was an apparent lack of data statements in the reviewed articles, which compromised the reproducibility, and thus the practical development in this field. Furthermore, as data drove the research activity, the found dataset repositories and open code are also presented in this review. Finally, all data and documentation presented in this review are open and available in a GitHub repository
    corecore