18,620 research outputs found

    Underlay Cognitive Radio with Full or Partial Channel Quality Information

    Get PDF
    Underlay cognitive radios (UCRs) allow a secondary user to enter a primary user's spectrum through intelligent utilization of multiuser channel quality information (CQI) and sharing of codebook. The aim of this work is to study two-user Gaussian UCR systems by assuming the full or partial knowledge of multiuser CQI. Key contribution of this work is motivated by the fact that the full knowledge of multiuser CQI is not always available. We first establish a location-aided UCR model where the secondary user is assumed to have partial CQI about the secondary-transmitter to primary-receiver link as well as full CQI about the other links. Then, new UCR approaches are proposed and carefully analyzed in terms of the secondary user's achievable rate, denoted by C2C_2, the capacity penalty to primary user, denoted by Ξ”C1\Delta C_1, and capacity outage probability. Numerical examples are provided to visually compare the performance of UCRs with full knowledge of multiuser CQI and the proposed approaches with partial knowledge of multiuser CQI.Comment: 29 Pages, 8 figure

    Full Diversity Space-Time Block Codes with Low-Complexity Partial Interference Cancellation Group Decoding

    Full text link
    Partial interference cancellation (PIC) group decoding proposed by Guo and Xia is an attractive low-complexity alternative to the optimal processing for multiple-input multiple-output (MIMO) wireless communications. It can well deal with the tradeoff among rate, diversity and complexity of space-time block codes (STBC). In this paper, a systematic design of full-diversity STBC with low-complexity PIC group decoding is proposed. The proposed code design is featured as a group-orthogonal STBC by replacing every element of an Alamouti code matrix with an elementary matrix composed of multiple diagonal layers of coded symbols. With the PIC group decoding and a particular grouping scheme, the proposed STBC can achieve full diversity, a rate of (2M)/(M+2)(2M)/(M+2) and a low-complexity decoding for MM transmit antennas. Simulation results show that the proposed codes can achieve the full diversity with PIC group decoding while requiring half decoding complexity of the existing codes.Comment: 10 pages, 3 figures

    Opportunistic Relaying in Wireless Networks

    Full text link
    Relay networks having nn source-to-destination pairs and mm half-duplex relays, all operating in the same frequency band in the presence of block fading, are analyzed. This setup has attracted significant attention and several relaying protocols have been reported in the literature. However, most of the proposed solutions require either centrally coordinated scheduling or detailed channel state information (CSI) at the transmitter side. Here, an opportunistic relaying scheme is proposed, which alleviates these limitations. The scheme entails a two-hop communication protocol, in which sources communicate with destinations only through half-duplex relays. The key idea is to schedule at each hop only a subset of nodes that can benefit from \emph{multiuser diversity}. To select the source and destination nodes for each hop, it requires only CSI at receivers (relays for the first hop, and destination nodes for the second hop) and an integer-value CSI feedback to the transmitters. For the case when nn is large and mm is fixed, it is shown that the proposed scheme achieves a system throughput of m/2m/2 bits/s/Hz. In contrast, the information-theoretic upper bound of (m/2)log⁑log⁑n(m/2)\log \log n bits/s/Hz is achievable only with more demanding CSI assumptions and cooperation between the relays. Furthermore, it is shown that, under the condition that the product of block duration and system bandwidth scales faster than log⁑n\log n, the achievable throughput of the proposed scheme scales as Θ(log⁑n)\Theta ({\log n}). Notably, this is proven to be the optimal throughput scaling even if centralized scheduling is allowed, thus proving the optimality of the proposed scheme in the scaling law sense.Comment: 17 pages, 8 figures, To appear in IEEE Transactions on Information Theor
    • …
    corecore