108,977 research outputs found

    Frontal Facial Symmetry Detection Using Eigenvalue Method

    Get PDF
    Facial symmetry is correspondence of face components on the both sides of face, left and right of a dividing line or about a center or an axis. Most of the research use face component like eyes, nose and ears component to identify facial symmetry. In this paper we suggest to add mouth as another face component to increase accuracy in facial symmetry detection. The results of facial symmetry detection are used for authentication process, analysis in medical, psychology and anthropology scope. By using MATLAB 7.1 we develop a program that can analyze face,asymmetry or not with utilizing eigenvalue. The contribution of this analysis is to know whether eigenvalue is suitable or not in analyzing facial symmetry

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201

    Grasping unknown objects in clutter by superquadric representation

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, a quick and efficient method is presented for grasping unknown objects in clutter. The grasping method relies on real-time superquadric (SQ) representation of partial view objects and incomplete object modelling, well suited for unknown symmetric objects in cluttered scenarios which is followed by optimized antipodal grasping. The incomplete object models are processed through a mirroring algorithm that assumes symmetry to first create an approximate complete model and then fit for SQ representation. The grasping algorithm is designed for maximum force balance and stability, taking advantage of the quick retrieval of dimension and surface curvature information from the SQ parameters. The pose of the SQs with respect to the direction of gravity is calculated and used together with the parameters of the SQs and specification of the gripper, to select the best direction of approach and contact points. The SQ fitting method has been tested on custom datasets containing objects in isolation as well as in clutter. The grasping algorithm is evaluated on a PR2 robot and real time results are presented. Initial results indicate that though the method is based on simplistic shape information, it outperforms other learning based grasping algorithms that also work in clutter in terms of time-efficiency and accuracy.Peer ReviewedPostprint (author's final draft

    Astrophysical Implications of a Visible Dark Matter Sector from a Custodially Warped-GUT

    Full text link
    We explore, within the warped extra dimensional framework, the possibility of finding anti-matter signals in cosmic rays (CRs) from dark matter (DM) annihilation. Exchange of order 100 GeV radion, an integral part of our setup, generically results in Sommerfeld enhancement of the annihilation rate for TeV DM mass. No dark sector is required to obtain boosted annihilation cross sections. A mild hierarchy between the radion and DM masses can be natural due to the pseudo-Goldstone boson nature of the radion. Implications of Sommerfeld enhancement in warped grand unified theory (GUT) models, where proton stability implies a DM candidate, are studied. We show, via partially unified Pati-Salam group, how to incorporate a custodial symmetry for Z->b\bar b into the GUT framework such that a few TeV Kaluza-Klein (KK) mass scale is allowed by precision tests. The model with smallest fully unified SO(10) representation allows us to decouple the DM from the electroweak sector. Thus, a correct DM relic density is obtained and direct detection bounds are satisfied. Looking at robust CR observables, a possible future signal in the \bar p / p flux ratio is found. We show how to embed a similar custodial symmetry for the right handed tau, allowing it to be strongly coupled to KK particles. Such a scenario might lead to observed signal in CR positrons; however, the DM candidate in this case can not constitute all of the DM in the universe. Independently of the above, the strong coupling between KK particles and tau's can lead to striking LHC signals.Comment: 53 pages, 9 figure
    • …
    corecore