42,065 research outputs found

    Abduction in Well-Founded Semantics and Generalized Stable Models

    Full text link
    Abductive logic programming offers a formalism to declaratively express and solve problems in areas such as diagnosis, planning, belief revision and hypothetical reasoning. Tabled logic programming offers a computational mechanism that provides a level of declarativity superior to that of Prolog, and which has supported successful applications in fields such as parsing, program analysis, and model checking. In this paper we show how to use tabled logic programming to evaluate queries to abductive frameworks with integrity constraints when these frameworks contain both default and explicit negation. The result is the ability to compute abduction over well-founded semantics with explicit negation and answer sets. Our approach consists of a transformation and an evaluation method. The transformation adjoins to each objective literal OO in a program, an objective literal not(O)not(O) along with rules that ensure that not(O)not(O) will be true if and only if OO is false. We call the resulting program a {\em dual} program. The evaluation method, \wfsmeth, then operates on the dual program. \wfsmeth{} is sound and complete for evaluating queries to abductive frameworks whose entailment method is based on either the well-founded semantics with explicit negation, or on answer sets. Further, \wfsmeth{} is asymptotically as efficient as any known method for either class of problems. In addition, when abduction is not desired, \wfsmeth{} operating on a dual program provides a novel tabling method for evaluating queries to ground extended programs whose complexity and termination properties are similar to those of the best tabling methods for the well-founded semantics. A publicly available meta-interpreter has been developed for \wfsmeth{} using the XSB system.Comment: 48 pages; To appear in Theory and Practice in Logic Programmin

    Aggregated fuzzy answer set programming

    Get PDF
    Fuzzy Answer Set programming (FASP) is an extension of answer set programming (ASP), based on fuzzy logic. It allows to encode continuous optimization problems in the same concise manner as ASP allows to model combinatorial problems. As a result of its inherent continuity, rules in FASP may be satisfied or violated to certain degrees. Rather than insisting that all rules are fully satisfied, we may only require that they are satisfied partially, to the best extent possible. However, most approaches that feature partial rule satisfaction limit themselves to attaching predefined weights to rules, which is not sufficiently flexible for most real-life applications. In this paper, we develop an alternative, based on aggregator functions that specify which (combination of) rules are most important to satisfy. We extend upon previous work by allowing aggregator expressions to define partially ordered preferences, and by the use of a fixpoint semantics

    Fages' Theorem and Answer Set Programming

    Full text link
    We generalize a theorem by Francois Fages that describes the relationship between the completion semantics and the answer set semantics for logic programs with negation as failure. The study of this relationship is important in connection with the emergence of answer set programming. Whenever the two semantics are equivalent, answer sets can be computed by a satisfiability solver, and the use of answer set solvers such as smodels and dlv is unnecessary. A logic programming representation of the blocks world due to Ilkka Niemelae is discussed as an example

    Recycling Computed Answers in Rewrite Systems for Abduction

    Full text link
    In rule-based systems, goal-oriented computations correspond naturally to the possible ways that an observation may be explained. In some applications, we need to compute explanations for a series of observations with the same domain. The question whether previously computed answers can be recycled arises. A yes answer could result in substantial savings of repeated computations. For systems based on classic logic, the answer is YES. For nonmonotonic systems however, one tends to believe that the answer should be NO, since recycling is a form of adding information. In this paper, we show that computed answers can always be recycled, in a nontrivial way, for the class of rewrite procedures that we proposed earlier for logic programs with negation. We present some experimental results on an encoding of the logistics domain.Comment: 20 pages. Full version of our IJCAI-03 pape
    corecore