1,987 research outputs found

    EIE: Efficient Inference Engine on Compressed Deep Neural Network

    Full text link
    State-of-the-art deep neural networks (DNNs) have hundreds of millions of connections and are both computationally and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources and power budgets. While custom hardware helps the computation, fetching weights from DRAM is two orders of magnitude more expensive than ALU operations, and dominates the required power. Previously proposed 'Deep Compression' makes it possible to fit large DNNs (AlexNet and VGGNet) fully in on-chip SRAM. This compression is achieved by pruning the redundant connections and having multiple connections share the same weight. We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Going from DRAM to SRAM gives EIE 120x energy saving; Exploiting sparsity saves 10x; Weight sharing gives 8x; Skipping zero activations from ReLU saves another 3x. Evaluated on nine DNN benchmarks, EIE is 189x and 13x faster when compared to CPU and GPU implementations of the same DNN without compression. EIE has a processing power of 102GOPS/s working directly on a compressed network, corresponding to 3TOPS/s on an uncompressed network, and processes FC layers of AlexNet at 1.88x10^4 frames/sec with a power dissipation of only 600mW. It is 24,000x and 3,400x more energy efficient than a CPU and GPU respectively. Compared with DaDianNao, EIE has 2.9x, 19x and 3x better throughput, energy efficiency and area efficiency.Comment: External Links: TheNextPlatform: http://goo.gl/f7qX0L ; O'Reilly: https://goo.gl/Id1HNT ; Hacker News: https://goo.gl/KM72SV ; Embedded-vision: http://goo.gl/joQNg8 ; Talk at NVIDIA GTC'16: http://goo.gl/6wJYvn ; Talk at Embedded Vision Summit: https://goo.gl/7abFNe ; Talk at Stanford University: https://goo.gl/6lwuer. Published as a conference paper in ISCA 201

    Improving DRAM Performance by Parallelizing Refreshes with Accesses

    Full text link
    Modern DRAM cells are periodically refreshed to prevent data loss due to leakage. Commodity DDR DRAM refreshes cells at the rank level. This degrades performance significantly because it prevents an entire rank from serving memory requests while being refreshed. DRAM designed for mobile platforms, LPDDR DRAM, supports an enhanced mode, called per-bank refresh, that refreshes cells at the bank level. This enables a bank to be accessed while another in the same rank is being refreshed, alleviating part of the negative performance impact of refreshes. However, there are two shortcomings of per-bank refresh. First, the per-bank refresh scheduling scheme does not exploit the full potential of overlapping refreshes with accesses across banks because it restricts the banks to be refreshed in a sequential round-robin order. Second, accesses to a bank that is being refreshed have to wait. To mitigate the negative performance impact of DRAM refresh, we propose two complementary mechanisms, DARP (Dynamic Access Refresh Parallelization) and SARP (Subarray Access Refresh Parallelization). The goal is to address the drawbacks of per-bank refresh by building more efficient techniques to parallelize refreshes and accesses within DRAM. First, instead of issuing per-bank refreshes in a round-robin order, DARP issues per-bank refreshes to idle banks in an out-of-order manner. Furthermore, DARP schedules refreshes during intervals when a batch of writes are draining to DRAM. Second, SARP exploits the existence of mostly-independent subarrays within a bank. With minor modifications to DRAM organization, it allows a bank to serve memory accesses to an idle subarray while another subarray is being refreshed. Extensive evaluations show that our mechanisms improve system performance and energy efficiency compared to state-of-the-art refresh policies and the benefit increases as DRAM density increases.Comment: The original paper published in the International Symposium on High-Performance Computer Architecture (HPCA) contains an error. The arxiv version has an erratum that describes the error and the fix for i
    • …
    corecore