891 research outputs found

    Index theory of one dimensional quantum walks and cellular automata

    Full text link
    If a one-dimensional quantum lattice system is subject to one step of a reversible discrete-time dynamics, it is intuitive that as much "quantum information" as moves into any given block of cells from the left, has to exit that block to the right. For two types of such systems - namely quantum walks and cellular automata - we make this intuition precise by defining an index, a quantity that measures the "net flow of quantum information" through the system. The index supplies a complete characterization of two properties of the discrete dynamics. First, two systems S_1, S_2 can be pieced together, in the sense that there is a system S which locally acts like S_1 in one region and like S_2 in some other region, if and only if S_1 and S_2 have the same index. Second, the index labels connected components of such systems: equality of the index is necessary and sufficient for the existence of a continuous deformation of S_1 into S_2. In the case of quantum walks, the index is integer-valued, whereas for cellular automata, it takes values in the group of positive rationals. In both cases, the map S -> ind S is a group homomorphism if composition of the discrete dynamics is taken as the group law of the quantum systems. Systems with trivial index are precisely those which can be realized by partitioned unitaries, and the prototypes of systems with non-trivial index are shifts.Comment: 38 pages. v2: added examples, terminology clarifie

    Physics as Quantum Information Processing: Quantum Fields as Quantum Automata

    Full text link
    Can we reduce Quantum Field Theory (QFT) to a quantum computation? Can physics be simulated by a quantum computer? Do we believe that a quantum field is ultimately made of a numerable set of quantum systems that are unitarily interacting? A positive answer to these questions corresponds to substituting QFT with a theory of quantum cellular automata (QCA), and the present work is examining this hypothesis. These investigations are part of a large research program on a "quantum-digitalization" of physics, with Quantum Theory as a special theory of information, and Physics as emergent from the same quantum-information processing. A QCA-based QFT has tremendous potential advantages compared to QFT, being quantum "ab-initio" and free from the problems plaguing QFT due to the continuum hypothesis. Here I will show how dynamics emerges from the quantum processing, how the QCA can reproduce the Dirac-field phenomenology at large scales, and the kind of departures from QFT that that should be expected at a Planck-scale discreteness. I will introduce the notions of linear field quantum automaton and local-matrix quantum automaton, in terms of which I will provide the solution to the Feynman's problem about the possibility of simulating a Fermi field with a quantum computer.Comment: This version: further improvements in notation. Added reference. Work presented at the conference "Foundations of Probability and Physics-6" (FPP6) held on 12-15 June 2011 at the Linnaeus University, Vaaxjo, Sweden. Many new results, e.g. Feynman problem of qubit-ization of Fermi fields solved

    Revisiting the Rice Theorem of Cellular Automata

    Full text link
    A cellular automaton is a parallel synchronous computing model, which consists in a juxtaposition of finite automata whose state evolves according to that of their neighbors. It induces a dynamical system on the set of configurations, i.e. the infinite sequences of cell states. The limit set of the cellular automaton is the set of configurations which can be reached arbitrarily late in the evolution. In this paper, we prove that all properties of limit sets of cellular automata with binary-state cells are undecidable, except surjectivity. This is a refinement of the classical "Rice Theorem" that Kari proved on cellular automata with arbitrary state sets.Comment: 12 pages conference STACS'1
    • …
    corecore