5,055 research outputs found

    DMT Optimality of LR-Aided Linear Decoders for a General Class of Channels, Lattice Designs, and System Models

    Full text link
    The work identifies the first general, explicit, and non-random MIMO encoder-decoder structures that guarantee optimality with respect to the diversity-multiplexing tradeoff (DMT), without employing a computationally expensive maximum-likelihood (ML) receiver. Specifically, the work establishes the DMT optimality of a class of regularized lattice decoders, and more importantly the DMT optimality of their lattice-reduction (LR)-aided linear counterparts. The results hold for all channel statistics, for all channel dimensions, and most interestingly, irrespective of the particular lattice-code applied. As a special case, it is established that the LLL-based LR-aided linear implementation of the MMSE-GDFE lattice decoder facilitates DMT optimal decoding of any lattice code at a worst-case complexity that grows at most linearly in the data rate. This represents a fundamental reduction in the decoding complexity when compared to ML decoding whose complexity is generally exponential in rate. The results' generality lends them applicable to a plethora of pertinent communication scenarios such as quasi-static MIMO, MIMO-OFDM, ISI, cooperative-relaying, and MIMO-ARQ channels, in all of which the DMT optimality of the LR-aided linear decoder is guaranteed. The adopted approach yields insight, and motivates further study, into joint transceiver designs with an improved SNR gap to ML decoding.Comment: 16 pages, 1 figure (3 subfigures), submitted to the IEEE Transactions on Information Theor

    Dual-lattice ordering and partial lattice reduction for SIC-based MIMO detection

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, we propose low-complexity lattice detection algorithms for successive interference cancelation (SIC) in multi-input multi-output (MIMO) communications. First, we present a dual-lattice view of the vertical Bell Labs Layered Space-Time (V-BLAST) detection. We show that V-BLAST ordering is equivalent to applying sorted QR decomposition to the dual basis, or equivalently, applying sorted Cholesky decomposition to the associated Gram matrix. This new view results in lower detection complexity and allows simultaneous ordering and detection. Second, we propose a partial reduction algorithm that only performs lattice reduction for the last several, weak substreams, whose implementation is also facilitated by the dual-lattice view. By tuning the block size of the partial reduction (hence the complexity), it can achieve a variable diversity order, hence offering a graceful tradeoff between performance and complexity for SIC-based MIMO detection. Numerical results are presented to compare the computational costs and to verify the achieved diversity order

    On the Proximity Factors of Lattice Reduction-Aided Decoding

    Full text link
    Lattice reduction-aided decoding features reduced decoding complexity and near-optimum performance in multi-input multi-output communications. In this paper, a quantitative analysis of lattice reduction-aided decoding is presented. To this aim, the proximity factors are defined to measure the worst-case losses in distances relative to closest point search (in an infinite lattice). Upper bounds on the proximity factors are derived, which are functions of the dimension nn of the lattice alone. The study is then extended to the dual-basis reduction. It is found that the bounds for dual basis reduction may be smaller. Reasonably good bounds are derived in many cases. The constant bounds on proximity factors not only imply the same diversity order in fading channels, but also relate the error probabilities of (infinite) lattice decoding and lattice reduction-aided decoding.Comment: remove redundant figure

    Unified bit-based probabilistic data association aided MIMO detection for high-order QAM constellations

    No full text
    A unified Bit-based Probabilistic Data Association (B-PDA) detection approach is proposed for Multiple-Input Multiple-Output (MIMO) systems employing high-order rectangular Quadrature Amplitude Modulation (QAM). The new approach transforms the symbol detection process of QAM to a bit-based process by introducing a Unified Matrix Representation (UMR) of QAM. Both linear natural and nonlinear binary reflected Gray bit-to-symbol mappings are considered. With the aid of simulation results, we demonstrate that the linear natural mapping based B-PDA approach typically attained an improved detection performance (measured in terms of both Bit Error Ratio (BER) and Symbol Error Ratio (SER)) in comparison to the conventional symbol-based PDA aided MIMO detector, despite its dramatically reduced computational complexity. The only exception is that at low SNRs, the linear natural mapping based B-PDA is slightly inferior in terms of its BER to the conventional symbol-based PDA using binary reflected Gray mapping. Furthermore, the simulation results show that the linear natural mapping based B-PDA MIMO detector may approach the best-case performance provided by the nonlinear binary reflected Gray mapping based B-PDA MIMO detector under ideal conditions. Additionally, the implementation of the B-PDA MIMO detector is shown to be much simpler in the case of the linear natural mapping. Based on these two points, we conclude that in the context of the uncoded B-PDA MIMO detector it is preferable to use the linear natural bit-to-symbol mapping, rather than the nonlinear Gray mapping

    Cyclic-Coded Integer-Forcing Equalization

    Full text link
    A discrete-time intersymbol interference channel with additive Gaussian noise is considered, where only the receiver has knowledge of the channel impulse response. An approach for combining decision-feedback equalization with channel coding is proposed, where decoding precedes the removal of intersymbol interference. This is accomplished by combining the recently proposed integer-forcing equalization approach with cyclic block codes. The channel impulse response is linearly equalized to an integer-valued response. This is then utilized by leveraging the property that a cyclic code is closed under (cyclic) integer-valued convolution. Explicit bounds on the performance of the proposed scheme are also derived

    An Adaptive Conditional Zero-Forcing Decoder with Full-diversity, Least Complexity and Essentially-ML Performance for STBCs

    Full text link
    A low complexity, essentially-ML decoding technique for the Golden code and the 3 antenna Perfect code was introduced by Sirianunpiboon, Howard and Calderbank. Though no theoretical analysis of the decoder was given, the simulations showed that this decoding technique has almost maximum-likelihood (ML) performance. Inspired by this technique, in this paper we introduce two new low complexity decoders for Space-Time Block Codes (STBCs) - the Adaptive Conditional Zero-Forcing (ACZF) decoder and the ACZF decoder with successive interference cancellation (ACZF-SIC), which include as a special case the decoding technique of Sirianunpiboon et al. We show that both ACZF and ACZF-SIC decoders are capable of achieving full-diversity, and we give sufficient conditions for an STBC to give full-diversity with these decoders. We then show that the Golden code, the 3 and 4 antenna Perfect codes, the 3 antenna Threaded Algebraic Space-Time code and the 4 antenna rate 2 code of Srinath and Rajan are all full-diversity ACZF/ACZF-SIC decodable with complexity strictly less than that of their ML decoders. Simulations show that the proposed decoding method performs identical to ML decoding for all these five codes. These STBCs along with the proposed decoding algorithm outperform all known codes in terms of decoding complexity and error performance for 2,3 and 4 transmit antennas. We further provide a lower bound on the complexity of full-diversity ACZF/ACZF-SIC decoding. All the five codes listed above achieve this lower bound and hence are optimal in terms of minimizing the ACZF/ACZF-SIC decoding complexity. Both ACZF and ACZF-SIC decoders are amenable to sphere decoding implementation.Comment: 11 pages, 4 figures. Corrected a minor typographical erro
    corecore