24,055 research outputs found

    Low rank tensor recovery via iterative hard thresholding

    Full text link
    We study extensions of compressive sensing and low rank matrix recovery (matrix completion) to the recovery of low rank tensors of higher order from a small number of linear measurements. While the theoretical understanding of low rank matrix recovery is already well-developed, only few contributions on the low rank tensor recovery problem are available so far. In this paper, we introduce versions of the iterative hard thresholding algorithm for several tensor decompositions, namely the higher order singular value decomposition (HOSVD), the tensor train format (TT), and the general hierarchical Tucker decomposition (HT). We provide a partial convergence result for these algorithms which is based on a variant of the restricted isometry property of the measurement operator adapted to the tensor decomposition at hand that induces a corresponding notion of tensor rank. We show that subgaussian measurement ensembles satisfy the tensor restricted isometry property with high probability under a certain almost optimal bound on the number of measurements which depends on the corresponding tensor format. These bounds are extended to partial Fourier maps combined with random sign flips of the tensor entries. Finally, we illustrate the performance of iterative hard thresholding methods for tensor recovery via numerical experiments where we consider recovery from Gaussian random measurements, tensor completion (recovery of missing entries), and Fourier measurements for third order tensors.Comment: 34 page

    On Iterative Hard Thresholding Methods for High-dimensional M-Estimation

    Full text link
    The use of M-estimators in generalized linear regression models in high dimensional settings requires risk minimization with hard L0L_0 constraints. Of the known methods, the class of projected gradient descent (also known as iterative hard thresholding (IHT)) methods is known to offer the fastest and most scalable solutions. However, the current state-of-the-art is only able to analyze these methods in extremely restrictive settings which do not hold in high dimensional statistical models. In this work we bridge this gap by providing the first analysis for IHT-style methods in the high dimensional statistical setting. Our bounds are tight and match known minimax lower bounds. Our results rely on a general analysis framework that enables us to analyze several popular hard thresholding style algorithms (such as HTP, CoSaMP, SP) in the high dimensional regression setting. We also extend our analysis to a large family of "fully corrective methods" that includes two-stage and partial hard-thresholding algorithms. We show that our results hold for the problem of sparse regression, as well as low-rank matrix recovery.Comment: 20 pages, 3 figures, To appear in the proceedings of the 28th Annual Conference on Neural Information Processing Systems, NIPS 201

    Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms

    Full text link
    This paper treats the problem of minimizing a general continuously differentiable function subject to sparsity constraints. We present and analyze several different optimality criteria which are based on the notions of stationarity and coordinate-wise optimality. These conditions are then used to derive three numerical algorithms aimed at finding points satisfying the resulting optimality criteria: the iterative hard thresholding method and the greedy and partial sparse-simplex methods. The first algorithm is essentially a gradient projection method while the remaining two algorithms are of coordinate descent type. The theoretical convergence of these methods and their relations to the derived optimality conditions are studied. The algorithms and results are illustrated by several numerical examples.Comment: submitted to SIAM Optimizatio

    Reliable recovery of hierarchically sparse signals for Gaussian and Kronecker product measurements

    Full text link
    We propose and analyze a solution to the problem of recovering a block sparse signal with sparse blocks from linear measurements. Such problems naturally emerge inter alia in the context of mobile communication, in order to meet the scalability and low complexity requirements of massive antenna systems and massive machine-type communication. We introduce a new variant of the Hard Thresholding Pursuit (HTP) algorithm referred to as HiHTP. We provide both a proof of convergence and a recovery guarantee for noisy Gaussian measurements that exhibit an improved asymptotic scaling in terms of the sampling complexity in comparison with the usual HTP algorithm. Furthermore, hierarchically sparse signals and Kronecker product structured measurements naturally arise together in a variety of applications. We establish the efficient reconstruction of hierarchically sparse signals from Kronecker product measurements using the HiHTP algorithm. Additionally, we provide analytical results that connect our recovery conditions to generalized coherence measures. Again, our recovery results exhibit substantial improvement in the asymptotic sampling complexity scaling over the standard setting. Finally, we validate in numerical experiments that for hierarchically sparse signals, HiHTP performs significantly better compared to HTP.Comment: 11+4 pages, 5 figures. V3: Incomplete funding information corrected and minor typos corrected. V4: Change of title and additional author Axel Flinth. Included new results on Kronecker product measurements and relations of HiRIP to hierarchical coherence measures. Improved presentation of general hierarchically sparse signals and correction of minor typo

    Fast and Provable Algorithms for Spectrally Sparse Signal Reconstruction via Low-Rank Hankel Matrix Completion

    Full text link
    A spectrally sparse signal of order rr is a mixture of rr damped or undamped complex sinusoids. This paper investigates the problem of reconstructing spectrally sparse signals from a random subset of nn regular time domain samples, which can be reformulated as a low rank Hankel matrix completion problem. We introduce an iterative hard thresholding (IHT) algorithm and a fast iterative hard thresholding (FIHT) algorithm for efficient reconstruction of spectrally sparse signals via low rank Hankel matrix completion. Theoretical recovery guarantees have been established for FIHT, showing that O(r2log2(n))O(r^2\log^2(n)) number of samples are sufficient for exact recovery with high probability. Empirical performance comparisons establish significant computational advantages for IHT and FIHT. In particular, numerical simulations on 33D arrays demonstrate the capability of FIHT on handling large and high-dimensional real data

    Post-selection point and interval estimation of signal sizes in Gaussian samples

    Full text link
    We tackle the problem of the estimation of a vector of means from a single vector-valued observation yy. Whereas previous work reduces the size of the estimates for the largest (absolute) sample elements via shrinkage (like James-Stein) or biases estimated via empirical Bayes methodology, we take a novel approach. We adapt recent developments by Lee et al (2013) in post selection inference for the Lasso to the orthogonal setting, where sample elements have different underlying signal sizes. This is exactly the setup encountered when estimating many means. It is shown that other selection procedures, like selecting the KK largest (absolute) sample elements and the Benjamini-Hochberg procedure, can be cast into their framework, allowing us to leverage their results. Point and interval estimates for signal sizes are proposed. These seem to perform quite well against competitors, both recent and more tenured. Furthermore, we prove an upper bound to the worst case risk of our estimator, when combined with the Benjamini-Hochberg procedure, and show that it is within a constant multiple of the minimax risk over a rich set of parameter spaces meant to evoke sparsity.Comment: 27 pages, 13 figure
    corecore