9,854 research outputs found

    On the complexity of algebraic numbers II. Continued fractions

    Full text link
    The continued fraction expansion of an irrational number α\alpha is eventually periodic if and only if α\alpha is a quadratic irrationality. However, very little is known regarding the size of the partial quotients of algebraic real numbers of degree at least three. Because of some numerical evidence and a belief that these numbers behave like most numbers in this respect, it is often conjectured that their partial quotients form an unbounded sequence. More modestly, we may expect that if the sequence of partial quotients of an irrational number α\alpha is, in some sense, "simple", then α\alpha is either quadratic or transcendental. The term "simple" can of course lead to many interpretations. It may denote real numbers whose continued fraction expansion has some regularity, or can be produced by a simple algorithm (by a simple Turing machine, for example), or arises from a simple dynamical system... The aim of this paper is to present in a unified way several new results on these different approaches of the notion of simplicity/complexity for the continued fraction expansion of algebraic real numbers of degree at least three

    On the Maillet--Baker continued fractions

    Full text link
    We use the Schmidt Subspace Theorem to establish the transcendence of a class of quasi-periodic continued fractions. This improves earlier works of Maillet and of A. Baker. We also improve an old result of Davenport and Roth on the rate of increase of the denominators of the convergents to any real algebraic number

    Structured matrices, continued fractions, and root localization of polynomials

    Full text link
    We give a detailed account of various connections between several classes of objects: Hankel, Hurwitz, Toeplitz, Vandermonde and other structured matrices, Stietjes and Jacobi-type continued fractions, Cauchy indices, moment problems, total positivity, and root localization of univariate polynomials. Along with a survey of many classical facts, we provide a number of new results.Comment: 79 pages; new material added to the Introductio

    Euclidean algorithms are Gaussian

    Get PDF
    This study provides new results about the probabilistic behaviour of a class of Euclidean algorithms: the asymptotic distribution of a whole class of cost-parameters associated to these algorithms is normal. For the cost corresponding to the number of steps Hensley already has proved a Local Limit Theorem; we give a new proof, and extend his result to other euclidean algorithms and to a large class of digit costs, obtaining a faster, optimal, rate of convergence. The paper is based on the dynamical systems methodology, and the main tool is the transfer operator. In particular, we use recent results of Dolgopyat.Comment: fourth revised version - 2 figures - the strict convexity condition used has been clarifie
    corecore