19 research outputs found

    Multi-Order Statistical Descriptors for Real-Time Face Recognition and Object Classification

    Get PDF
    We propose novel multi-order statistical descriptors which can be used for high speed object classification or face recognition from videos or image sets. We represent each gallery set with a global second-order statistic which captures correlated global variations in all feature directions as well as the common set structure. A lightweight descriptor is then constructed by efficiently compacting the second-order statistic using Cholesky decomposition. We then enrich the descriptor with the first-order statistic of the gallery set to further enhance the representation power. By projecting the descriptor into a low-dimensional discriminant subspace, we obtain further dimensionality reduction, while the discrimination power of the proposed representation is still preserved. Therefore, our method represents a complex image set by a single descriptor having significantly reduced dimensionality. We apply the proposed algorithm on image set and video-based face and periocular biometric identification, object category recognition, and hand gesture recognition. Experiments on six benchmark data sets validate that the proposed method achieves significantly better classification accuracy with lower computational complexity than the existing techniques. The proposed compact representations can be used for real-time object classification and face recognition in videos. 2013 IEEE.This work was supported by NPRP through the Qatar National Research Fund (a member of Qatar Foundation) under Grant 7-1711-1-312.Scopu

    A Highly Efficient Biometrics Approach for Unconstrained Iris Segmentation and Recognition

    Get PDF
    This dissertation develops an innovative approach towards less-constrained iris biometrics. Two major contributions are made in this research endeavor: (1) Designed an award-winning segmentation algorithm in the less-constrained environment where image acquisition is made of subjects on the move and taken under visible lighting conditions, and (2) Developed a pioneering iris biometrics method coupling segmentation and recognition of the iris based on video of moving persons under different acquisitions scenarios. The first part of the dissertation introduces a robust and fast segmentation approach using still images contained in the UBIRIS (version 2) noisy iris database. The results show accuracy estimated at 98% when using 500 randomly selected images from the UBIRIS.v2 partial database, and estimated at 97% in a Noisy Iris Challenge Evaluation (NICE.I) in an international competition that involved 97 participants worldwide involving 35 countries, ranking this research group in sixth position. This accuracy is achieved with a processing speed nearing real time. The second part of this dissertation presents an innovative segmentation and recognition approach using video-based iris images. Following the segmentation stage which delineats the iris region through a novel segmentation strategy, some pioneering experiments on the recognition stage of the less-constrained video iris biometrics have been accomplished. In the video-based and less-constrained iris recognition, the test or subject iris videos/images and the enrolled iris images are acquired with different acquisition systems. In the matching step, the verification/identification result was accomplished by comparing the similarity distance of encoded signature from test images with each of the signature dataset from the enrolled iris images. With the improvements gained, the results proved to be highly accurate under the unconstrained environment which is more challenging. This has led to a false acceptance rate (FAR) of 0% and a false rejection rate (FRR) of 17.64% for 85 tested users with 305 test images from the video, which shows great promise and high practical implications for iris biometrics research and system design

    Cross-Spectral Face Recognition Between Near-Infrared and Visible Light Modalities.

    Get PDF
    In this thesis, improvement of face recognition performance with the use of images from the visible (VIS) and near-infrared (NIR) spectrum is attempted. Face recognition systems can be adversely affected by scenarios which encounter a significant amount of illumination variation across images of the same subject. Cross-spectral face recognition systems using images collected across the VIS and NIR spectrum can counter the ill-effects of illumination variation by standardising both sets of images. A novel preprocessing technique is proposed, which attempts the transformation of faces across both modalities to a feature space with enhanced correlation. Direct matching across the modalities is not possible due to the inherent spectral differences between NIR and VIS face images. Compared to a VIS light source, NIR radiation has a greater penetrative depth when incident on human skin. This fact, in addition to the greater number of scattering interactions within the skin by rays from the NIR spectrum can alter the morphology of the human face enough to disable a direct match with the corresponding VIS face. Several ways to bridge the gap between NIR-VIS faces have been proposed previously. Mostly of a data-driven approach, these techniques include standardised photometric normalisation techniques and subspace projections. A generative approach driven by a true physical model has not been investigated till now. In this thesis, it is proposed that a large proportion of the scattering interactions present in the NIR spectrum can be accounted for using a model for subsurface scattering. A novel subsurface scattering inversion (SSI) algorithm is developed that implements an inversion approach based on translucent surface rendering by the computer graphics field, whereby the reversal of the first order effects of subsurface scattering is attempted. The SSI algorithm is then evaluated against several preprocessing techniques, and using various permutations of feature extraction and subspace projection algorithms. The results of this evaluation show an improvement in cross spectral face recognition performance using SSI over existing Retinex-based approaches. The top performing combination of an existing photometric normalisation technique, Sequential Chain, is seen to be the best performing with a Rank 1 recognition rate of 92. 5%. In addition, the improvement in performance using non-linear projection models shows an element of non-linearity exists in the relationship between NIR and VIS

    Evaluation of face recognition system in heterogeneous environments (visible vs NIR)

    Get PDF
    Performing facial recognition between Near Infrared (NIR) and visible-light (VIS) images has been established as a common method of countering illumination variation problems in face recognition. In this paper we present a new database to enable the evaluation of cross-spectral face recognition. A series of preprocessing algorithms, followed by Local Binary Pattern Histogram (LBPH) representation and combinations with Linear Discriminant Analysis (LDA) are used for recognition. These experiments are conducted on both NIR→VIS and the less common VIS→NIR protocols, with permutations of uni-modal training sets. 12 individual baseline algorithms are presented. In addition, the best performing fusion approaches involving a subset of 12 algorithms are also described. © 2011 IEEE

    Cross-Spectral Full and Partial Face Recognition: Preprocessing, Feature Extraction and Matching

    Get PDF
    Cross-spectral face recognition remains a challenge in the area of biometrics. The problem arises from some real-world application scenarios such as surveillance at night time or in harsh environments, where traditional face recognition techniques are not suitable or limited due to usage of imagery obtained in the visible light spectrum. This motivates the study conducted in the dissertation which focuses on matching infrared facial images against visible light images. The study outspreads from aspects of face recognition such as preprocessing to feature extraction and to matching.;We address the problem of cross-spectral face recognition by proposing several new operators and algorithms based on advanced concepts such as composite operators, multi-level data fusion, image quality parity, and levels of measurement. To be specific, we experiment and fuse several popular individual operators to construct a higher-performed compound operator named GWLH which exhibits complementary advantages of involved individual operators. We also combine a Gaussian function with LBP, generalized LBP, WLD and/or HOG and modify them into multi-lobe operators with smoothed neighborhood to have a new type of operators named Composite Multi-Lobe Descriptors. We further design a novel operator termed Gabor Multi-Levels of Measurement based on the theory of levels of measurements, which benefits from taking into consideration the complementary edge and feature information at different levels of measurements.;The issue of image quality disparity is also studied in the dissertation due to its common occurrence in cross-spectral face recognition tasks. By bringing the quality of heterogeneous imagery closer to each other, we successfully achieve an improvement in the recognition performance. We further study the problem of cross-spectral recognition using partial face since it is also a common problem in practical usage. We begin with matching heterogeneous periocular regions and generalize the topic by considering all three facial regions defined in both a characteristic way and a mixture way.;In the experiments we employ datasets which include all the sub-bands within the infrared spectrum: near-infrared, short-wave infrared, mid-wave infrared, and long-wave infrared. Different standoff distances varying from short to intermediate and long are considered too. Our methods are compared with other popular or state-of-the-art methods and are proven to be advantageous

    Unifying the Visible and Passive Infrared Bands: Homogeneous and Heterogeneous Multi-Spectral Face Recognition

    Get PDF
    Face biometrics leverages tools and technology in order to automate the identification of individuals. In most cases, biometric face recognition (FR) can be used for forensic purposes, but there remains the issue related to the integration of technology into the legal system of the court. The biggest challenge with the acceptance of the face as a modality used in court is the reliability of such systems under varying pose, illumination and expression, which has been an active and widely explored area of research over the last few decades (e.g. same-spectrum or homogeneous matching). The heterogeneous FR problem, which deals with matching face images from different sensors, should be examined for the benefit of military and law enforcement applications as well. In this work we are concerned primarily with visible band images (380-750 nm) and the infrared (IR) spectrum, which has become an area of growing interest.;For homogeneous FR systems, we formulate and develop an efficient, semi-automated, direct matching-based FR framework, that is designed to operate efficiently when face data is captured using either visible or passive IR sensors. Thus, it can be applied in both daytime and nighttime environments. First, input face images are geometrically normalized using our pre-processing pipeline prior to feature-extraction. Then, face-based features including wrinkles, veins, as well as edges of facial characteristics, are detected and extracted for each operational band (visible, MWIR, and LWIR). Finally, global and local face-based matching is applied, before fusion is performed at the score level. Although this proposed matcher performs well when same-spectrum FR is performed, regardless of spectrum, a challenge exists when cross-spectral FR matching is performed. The second framework is for the heterogeneous FR problem, and deals with the issue of bridging the gap across the visible and passive infrared (MWIR and LWIR) spectrums. Specifically, we investigate the benefits and limitations of using synthesized visible face images from thermal and vice versa, in cross-spectral face recognition systems when utilizing canonical correlation analysis (CCA) and locally linear embedding (LLE), a manifold learning technique for dimensionality reduction. Finally, by conducting an extensive experimental study we establish that the combination of the proposed synthesis and demographic filtering scheme increases system performance in terms of rank-1 identification rate

    Heterogeneous Face Recognition Using Kernel Prototype Similarities

    Full text link

    Homogeneous and Heterogeneous Face Recognition: Enhancing, Encoding and Matching for Practical Applications

    Get PDF
    Face Recognition is the automatic processing of face images with the purpose to recognize individuals. Recognition task becomes especially challenging in surveillance applications, where images are acquired from a long range in the presence of difficult environments. Short Wave Infrared (SWIR) is an emerging imaging modality that is able to produce clear long range images in difficult environments or during night time. Despite the benefits of the SWIR technology, matching SWIR images against a gallery of visible images presents a challenge, since the photometric properties of the images in the two spectral bands are highly distinct.;In this dissertation, we describe a cross spectral matching method that encodes magnitude and phase of multi-spectral face images filtered with a bank of Gabor filters. The magnitude of filtered images is encoded with Simplified Weber Local Descriptor (SWLD) and Local Binary Pattern (LBP) operators. The phase is encoded with Generalized Local Binary Pattern (GLBP) operator. Encoded multi-spectral images are mapped into a histogram representation and cross matched by applying symmetric Kullback-Leibler distance. Performance of the developed algorithm is demonstrated on TINDERS database that contains long range SWIR and color images acquired at a distance of 2, 50, and 106 meters.;Apart from long acquisition range, other variations and distortions such as pose variation, motion and out of focus blur, and uneven illumination may be observed in multispectral face images. Recognition performance of the face recognition matcher can be greatly affected by these distortions. It is important, therefore, to ensure that matching is performed on high quality images. Poor quality images have to be either enhanced or discarded. This dissertation addresses the problem of selecting good quality samples.;The last chapters of the dissertation suggest a number of modifications applied to the cross spectral matching algorithm for matching low resolution color images in near-real time. We show that the method that encodes the magnitude of Gabor filtered images with the SWLD operator guarantees high recognition rates. The modified method (Gabor-SWLD) is adopted in a camera network set up where cameras acquire several views of the same individual. The designed algorithm and software are fully automated and optimized to perform recognition in near-real time. We evaluate the recognition performance and the processing time of the method on a small dataset collected at WVU
    corecore