31,474 research outputs found

    The Expectation Monad in Quantum Foundations

    Get PDF
    The expectation monad is introduced abstractly via two composable adjunctions, but concretely captures measures. It turns out to sit in between known monads: on the one hand the distribution and ultrafilter monad, and on the other hand the continuation monad. This expectation monad is used in two probabilistic analogues of fundamental results of Manes and Gelfand for the ultrafilter monad: algebras of the expectation monad are convex compact Hausdorff spaces, and are dually equivalent to so-called Banach effect algebras. These structures capture states and effects in quantum foundations, and also the duality between them. Moreover, the approach leads to a new re-formulation of Gleason's theorem, expressing that effects on a Hilbert space are free effect modules on projections, obtained via tensoring with the unit interval.Comment: In Proceedings QPL 2011, arXiv:1210.029

    A functional quantum programming language

    Full text link
    We introduce the language QML, a functional language for quantum computations on finite types. Its design is guided by its categorical semantics: QML programs are interpreted by morphisms in the category FQC of finite quantum computations, which provides a constructive semantics of irreversible quantum computations realisable as quantum gates. QML integrates reversible and irreversible quantum computations in one language, using first order strict linear logic to make weakenings explicit. Strict programs are free from decoherence and hence preserve superpositions and entanglement - which is essential for quantum parallelism.Comment: 15 pages. Final version, to appear in Logic in Computer Science 200

    Lambek vs. Lambek: Functorial Vector Space Semantics and String Diagrams for Lambek Calculus

    Full text link
    The Distributional Compositional Categorical (DisCoCat) model is a mathematical framework that provides compositional semantics for meanings of natural language sentences. It consists of a computational procedure for constructing meanings of sentences, given their grammatical structure in terms of compositional type-logic, and given the empirically derived meanings of their words. For the particular case that the meaning of words is modelled within a distributional vector space model, its experimental predictions, derived from real large scale data, have outperformed other empirically validated methods that could build vectors for a full sentence. This success can be attributed to a conceptually motivated mathematical underpinning, by integrating qualitative compositional type-logic and quantitative modelling of meaning within a category-theoretic mathematical framework. The type-logic used in the DisCoCat model is Lambek's pregroup grammar. Pregroup types form a posetal compact closed category, which can be passed, in a functorial manner, on to the compact closed structure of vector spaces, linear maps and tensor product. The diagrammatic versions of the equational reasoning in compact closed categories can be interpreted as the flow of word meanings within sentences. Pregroups simplify Lambek's previous type-logic, the Lambek calculus, which has been extensively used to formalise and reason about various linguistic phenomena. The apparent reliance of the DisCoCat on pregroups has been seen as a shortcoming. This paper addresses this concern, by pointing out that one may as well realise a functorial passage from the original type-logic of Lambek, a monoidal bi-closed category, to vector spaces, or to any other model of meaning organised within a monoidal bi-closed category. The corresponding string diagram calculus, due to Baez and Stay, now depicts the flow of word meanings.Comment: 29 pages, pending publication in Annals of Pure and Applied Logi

    Mackey-complete spaces and power series -- A topological model of Differential Linear Logic

    Get PDF
    In this paper, we have described a denotational model of Intuitionist Linear Logic which is also a differential category. Formulas are interpreted as Mackey-complete topological vector space and linear proofs are interpreted by bounded linear functions. So as to interpret non-linear proofs of Linear Logic, we have used a notion of power series between Mackey-complete spaces, generalizing the notion of entire functions in C. Finally, we have obtained a quantitative model of Intuitionist Differential Linear Logic, where the syntactic differentiation correspond to the usual one and where the interpretations of proofs satisfy a Taylor expansion decomposition

    Lower-bound Time-Complexity Analysis of Logic Programs

    Get PDF
    The paper proposes a technique for inferring conditions on goals that, when satisfied, ensure that a goal is sufficiently coarse-grained to warrant parallel evaluation. The method is powerful enough to reason about divide-and-conquer programs, and in the case of quicksort, for instance, can infer that a quicksort goal has a time complexity that exceeds 64 resolution steps (a threshold for spawning) if the input list is of length 10 or more. This gives a simple run-time tactic for controlling spawning. The method has been proved correct, can be implemented straightforwardly, has been demonstrated to be useful on a parallel machine, and, in contrast with much of the previous work on time-complexity analysis of logic programs, does not require any complicated difference equation solving machinery

    Kochen-Specker Sets and Generalized Orthoarguesian Equations

    Full text link
    Every set (finite or infinite) of quantum vectors (states) satisfies generalized orthoarguesian equations (nnOA). We consider two 3-dim Kochen-Specker (KS) sets of vectors and show how each of them should be represented by means of a Hasse diagram---a lattice, an algebra of subspaces of a Hilbert space--that contains rays and planes determined by the vectors so as to satisfy nnOA. That also shows why they cannot be represented by a special kind of Hasse diagram called a Greechie diagram, as has been erroneously done in the literature. One of the KS sets (Peres') is an example of a lattice in which 6OA pass and 7OA fails, and that closes an open question of whether the 7oa class of lattices properly contains the 6oa class. This result is important because it provides additional evidence that our previously given proof of noa =< (n+1)oa can be extended to proper inclusion noa < (n+1)oa and that nOA form an infinite sequence of successively stronger equations.Comment: 16 pages and 5 figure

    Convolution, Separation and Concurrency

    Full text link
    A notion of convolution is presented in the context of formal power series together with lifting constructions characterising algebras of such series, which usually are quantales. A number of examples underpin the universality of these constructions, the most prominent ones being separation logics, where convolution is separating conjunction in an assertion quantale; interval logics, where convolution is the chop operation; and stream interval functions, where convolution is used for analysing the trajectories of dynamical or real-time systems. A Hoare logic is constructed in a generic fashion on the power series quantale, which applies to each of these examples. In many cases, commutative notions of convolution have natural interpretations as concurrency operations.Comment: 39 page
    corecore