101,033 research outputs found

    Reduced Differential Transform Method for (2+1) Dimensional type of the Zakharov-Kuznetsov ZK(n,n) Equations

    Full text link
    In this paper, reduced differential transform method (RDTM) is employed to approximate the solutions of (2+1) dimensional type of the Zakharov-Kuznetsov partial differential equations. We apply these method to two examples. Thus, we have obtained numerical solution partial differential equations of Zakharov-Kuznetsov. These examples are prepared to show the efficiency and simplicity of the method

    Open problems in symmetry analysis

    Get PDF

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    Modeling an Aquifer: Numerical Solution to the Groundwater Flow Equation

    Full text link
    We present a model of groundwater dynamics under stationary flow and governed by Darcy's Law of water motion through porous media, we apply it to study a 2D aquifer with water table of constant slope comprised of an homogeneous and isotropic media, the more realistic case of an homogeneous anisotropic soil is also considered. Taking into account some geophysical parameters we develop a computational routine, in the Finite Difference Method, that solves the resulting elliptic partial equation, both in a homogeneous isotropic and homogeneous anisotropic media. After calibration of the numerical model, this routine is used to begin a study of the Ayamonte-Huelva aquifer in Spain, a modest analysis of the system is given, we compute the average discharge vector as well as its root mean square as a first predictive approximation of the flux in this system, providing us a signal of the location of best exploitation; long term goal is to develop a complete computational tool for the analysis of groundwater dynamics.Comment: 13 pages and 12 figure
    • …
    corecore