558 research outputs found

    A FPGA-Based Reconfigurable Software Architecture for Highly Dependable Systems

    Get PDF
    Nowadays, systems-on-chip are commonly equipped with reconfigurable hardware. The use of hybrid architectures based on a mixture of general purpose processors and reconfigurable components has gained importance across the scientific community allowing a significant improvement of computational performance. Along with the demand for performance, the great sensitivity of reconfigurable hardware devices to physical defects lead to the request of highly dependable and fault tolerant systems. This paper proposes an FPGA-based reconfigurable software architecture able to abstract the underlying hardware platform giving an homogeneous view of it. The abstraction mechanism is used to implement fault tolerance mechanisms with a minimum impact on the system performanc

    Microprocessor fault-tolerance via on-the-fly partial reconfiguration

    Get PDF
    This paper presents a novel approach to exploit FPGA dynamic partial reconfiguration to improve the fault tolerance of complex microprocessor-based systems, with no need to statically reserve area to host redundant components. The proposed method not only improves the survivability of the system by allowing the online replacement of defective key parts of the processor, but also provides performance graceful degradation by executing in software the tasks that were executed in hardware before a fault and the subsequent reconfiguration happened. The advantage of the proposed approach is that thanks to a hardware hypervisor, the CPU is totally unaware of the reconfiguration happening in real-time, and there's no dependency on the CPU to perform it. As proof of concept a design using this idea has been developed, using the LEON3 open-source processor, synthesized on a Virtex 4 FPG

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    A PUF-based cryptographic security solution for IoT systems on chip

    Get PDF
    The integration of multicore processors and peripherals from multiple intellectual property core providers as hardware components of IoT multiprocessor systems-on-chip (SoC) represents a source of security vulnerabilities for the in-chip communication. This paper describes the concept and the practical results of a SoC security implementation that is illustrative for IoT applications. The mechanism employed in this approach uses physically unclonable functions (PUF) and symmetric cryptography in order to encrypt the transferred messages within the SoC between the microprocessor and its peripherals. The mechanism is experimentally validated at FPGA level, the paper describing also an implementation scenario for an IoT ARM based device

    Using Platform Express for System-on-Chip Design

    Get PDF
    The advent of nanoscale technology brings with it an increase in system complexity with integrated circuit transistor numbers reaching hundreds of millions. Systems-on-chip are attaining a level of complexity where design turn-around times are a major factor. Reusing existing intellectual property blocks that are already verified for functionality could help minimize the design time and increase system reliability. This allows the designers to focus on more important product design aspects. Platform-based design is an effective method to deal with the increasing pressure on time-to-market. The approach also provides a practical solution to reduce the design and manufacturing costs. This thesis is a result of the of the ongoing Volunteer SoC project at the University of Tennessee and in this, we explore the possibility of employing the Platform Express (PX) tool for designing SoCs. The PX application enables system designers to rapidly build and verify SoC design concepts. The tool also promotes Intellectual Property (IP) integration within the built-in PX libraries. The tool utilizes XML for describing the IP data, which allows smooth integration of IP into a single design from many different sources. We have followed the complete IP integration flow and have successfully installed a component into the tool’s library and have also generated a system design using the same IP

    Security of Electrical, Optical and Wireless On-Chip Interconnects: A Survey

    Full text link
    The advancement of manufacturing technologies has enabled the integration of more intellectual property (IP) cores on the same system-on-chip (SoC). Scalable and high throughput on-chip communication architecture has become a vital component in today's SoCs. Diverse technologies such as electrical, wireless, optical, and hybrid are available for on-chip communication with different architectures supporting them. Security of the on-chip communication is crucial because exploiting any vulnerability would be a goldmine for an attacker. In this survey, we provide a comprehensive review of threat models, attacks, and countermeasures over diverse on-chip communication technologies as well as sophisticated architectures.Comment: 41 pages, 24 figures, 4 table

    Performance Analysis of Encryption Capabilities of ARM-based Single Board Microcomputers

    Get PDF
    In the few years since the Raspberry Pi was released in 2012, countless microcomputers based on the ARM architecture have been introduced.Their small size, high performance relative to their power consumption, and the ability to run the popular Linux operating system make them ideal for a wide range of tasks. Information security is an area of particular importance. Different encryption and encoding algorithms play an important role in almost all areas of information security. However, these algorithms are very computationally intensive, so it is important to investigate which microcomputers can be used for these tasks, and under which trade-offs. The performance of ten different microcomputers is investigated and presented for the application of common symmetric and public-key encryption and decryption, digest creation and message authentication protocols, such as RSA, AES, HMAC, MD5, SHA. Reliable encryption requires the generation of reliable (pseudo)random numbers (Cryptographically Secure Random Numbers, CSRN), and microcomputers based on ARM SoCs usually have hardware implemented (pseudo)random number generators. The applicability of the random number generat er generators. The applicability of the random number generators of different microcomputers are investigated and presented; test methoods are described , and recommendations are made

    A Novel Approach for Integrated Shortest Path Finding Algorithm (ISPSA) Using Mesh Topologies and Networks-on-Chip (NOC)

    Get PDF
    A novel data dispatching or communication technique based on circulating networks of any network IP is suggested for multi data transmission in multiprocessor systems using Networks-On-Chip (NoC). In wireless communication network management have some negatives have heavy data losses and traffic of data sending data while packet scheduling and low performance in the varied network due to workloads. To overcome the drawbacks, in this method proposed system is Integrated Shortest Path Search Algorithm (ISPSA) using mesh topologies. The message is sent to IP (Internet Protocol) in the network until the specified bus accepts it. Integrated Shortest Path Search Algorithm for communication between two nodes is possible at any one moment. On-chip wireless communications operating at specific frequencies are the most capable option for overcoming metal interconnects multi-hop delay and excessive power consumption in Network-on-Chip (NoC) devices. Each node can be indicated by a pair of coordinates (level, position), where the level is the tree's vertical level and the view point is its horizontal arrangement in the sequence of left to right. The output gateway node's n nodes are linked to two nodes in the following level, with all resource nodes located at the bottommost vertical level and the constraint of this topology is its narrow bisection area. The software Xilinx 14.5 tool by using that overall performance analysis of mesh topology, each method are reduced data losses with better accuracy although the productivity of the delay is decreased by 21 % was evaluated and calculated.
    corecore