62 research outputs found

    Equational theories and the behavior of finite automata (Algebras, Languages, Algorithms and Computations)

    Get PDF

    A regular viewpoint on processes and algebra

    Get PDF
    While different algebraic structures have been proposed for the treatment of concurrency, finding solutions for equations over these structures needs to be worked on further. This article is a survey of process algebra from a very narrow viewpoint, that of finite automata and regular languages. What have automata theorists learnt from process algebra about finite state concurrency? The title is stolen from [31]. There is a recent survey article [7] on finite state processes which deals extensively with rational expressions. The aim of the present article is different. How do standard notions such as Petri nets, Mazurkiewicz trace languages and Zielonka automata fare in the world of process algebra? This article has no original results, and the attempt is to raise questions rather than answer them

    Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools

    Full text link
    We provide simple equational principles for deriving rely-guarantee-style inference rules and refinement laws based on idempotent semirings. We link the algebraic layer with concrete models of programs based on languages and execution traces. We have implemented the approach in Isabelle/HOL as a lightweight concurrency verification tool that supports reasoning about the control and data flow of concurrent programs with shared variables at different levels of abstraction. This is illustrated on two simple verification examples
    corecore