8,179 research outputs found

    Balancedness of subclasses of circular-arc graphs

    Get PDF
    A graph is balanced if its clique-vertex incidence matrix contains no square submatrix of odd order with exactly two ones per row and per column. There is a characterization of balanced graphs by forbidden induced subgraphs, but no characterization by mininal forbidden induced subgraphs is known, not even for the case of circular-arc graphs. A circular-arc graph is the intersection graph of a family of arcs on a circle. In this work, we characterize when a given graph G is balanced in terms of minimal forbidden induced subgraphs, by restricting the analysis to the case where G belongs to certain classes of circular-arc graphs, including Helly circular-arc graphs, claw-free circular-arc graphs, and gem-free circular-arc graphs. In the case of gem-free circular-arc graphs, analogous characterizations are derived for two superclasses of balanced graphs: clique-perfect graphs and coordinated graphs.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duran, Guillermo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Chile; ChileFil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Wagler, Annegret Katrin. Centre National de la Recherche Scientifique; Franci

    Subclasses of Normal Helly Circular-Arc Graphs

    Full text link
    A Helly circular-arc model M = (C,A) is a circle C together with a Helly family \A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how do these classes of graphs relate with straight and round digraphs.Comment: 39 pages, 13 figures. A previous version of the paper (entitled Proper Helly Circular-Arc Graphs) appeared at WG'0

    Obstructions to within a few vertices or edges of acyclic

    Full text link
    Finite obstruction sets for lower ideals in the minor order are guaranteed to exist by the Graph Minor Theorem. It has been known for several years that, in principle, obstruction sets can be mechanically computed for most natural lower ideals. In this paper, we describe a general-purpose method for finding obstructions by using a bounded treewidth (or pathwidth) search. We illustrate this approach by characterizing certain families of cycle-cover graphs based on the two well-known problems: kk-{\sc Feedback Vertex Set} and kk-{\sc Feedback Edge Set}. Our search is based on a number of algorithmic strategies by which large constants can be mitigated, including a randomized strategy for obtaining proofs of minimality.Comment: 16 page

    On the area of constrained polygonal linkages

    Full text link
    We study configuration spaces of linkages whose underlying graph are polygons with diagonal constrains, or more general, partial two-trees. We show that (with an appropriate definition) the oriented area is a Bott-Morse function on the configuration space. Its critical points are described and Bott-Morse indices are computed. This paper is a generalization of analogous results for polygonal linkages (obtained earlier by G. Khimshiashvili, G. Panina, and A. Zhukova)
    • …
    corecore