16,379 research outputs found

    Sparse Coding of Neural Word Embeddings for Multilingual Sequence Labeling

    Get PDF
    In this paper we propose and carefully evaluate a sequence labeling framework which solely utilizes sparse indicator features derived from dense distributed word representations. The proposed model obtains (near) state-of-the art performance for both part-of-speech tagging and named entity recognition for a variety of languages. Our model relies only on a few thousand sparse coding-derived features, without applying any modification of the word representations employed for the different tasks. The proposed model has favorable generalization properties as it retains over 89.8% of its average POS tagging accuracy when trained at 1.2% of the total available training data, i.e.~150 sentences per language

    MBT: A Memory-Based Part of Speech Tagger-Generator

    Full text link
    We introduce a memory-based approach to part of speech tagging. Memory-based learning is a form of supervised learning based on similarity-based reasoning. The part of speech tag of a word in a particular context is extrapolated from the most similar cases held in memory. Supervised learning approaches are useful when a tagged corpus is available as an example of the desired output of the tagger. Based on such a corpus, the tagger-generator automatically builds a tagger which is able to tag new text the same way, diminishing development time for the construction of a tagger considerably. Memory-based tagging shares this advantage with other statistical or machine learning approaches. Additional advantages specific to a memory-based approach include (i) the relatively small tagged corpus size sufficient for training, (ii) incremental learning, (iii) explanation capabilities, (iv) flexible integration of information in case representations, (v) its non-parametric nature, (vi) reasonably good results on unknown words without morphological analysis, and (vii) fast learning and tagging. In this paper we show that a large-scale application of the memory-based approach is feasible: we obtain a tagging accuracy that is on a par with that of known statistical approaches, and with attractive space and time complexity properties when using {\em IGTree}, a tree-based formalism for indexing and searching huge case bases.} The use of IGTree has as additional advantage that optimal context size for disambiguation is dynamically computed.Comment: 14 pages, 2 Postscript figure

    Weakly supervised POS tagging without disambiguation

    Get PDF
    Weakly supervised part-of-speech (POS) tagging is to learn to predict the POS tag for a given word in context by making use of partial annotated data instead of the fully tagged corpora. Weakly supervised POS tagging would benefit various natural language processing applications in such languages where tagged corpora are mostly unavailable. In this article, we propose a novel framework for weakly supervised POS tagging based on a dictionary of words with their possible POS tags. In the constrained error-correcting output codes (ECOC)-based approach, a unique L-bit vector is assigned to each POS tag. The set of bitvectors is referred to as a coding matrix with value { 1, -1}. Each column of the coding matrix specifies a dichotomy over the tag space to learn a binary classifier. For each binary classifier, its training data is generated in the following way: each pair of words and its possible POS tags are considered as a positive training example only if the whole set of its possible tags falls into the positive dichotomy specified by the column coding and similarly for negative training examples. Given a word in context, its POS tag is predicted by concatenating the predictive outputs of the L binary classifiers and choosing the tag with the closest distance according to some measure. By incorporating the ECOC strategy, the set of all possible tags for each word is treated as an entirety without the need of performing disambiguation. Moreover, instead of manual feature engineering employed in most previous POS tagging approaches, features for training and testing in the proposed framework are automatically generated using neural language modeling. The proposed framework has been evaluated on three corpora for English, Italian, and Malagasy POS tagging, achieving accuracies of 93.21%, 90.9%, and 84.5% individually, which shows a significant improvement compared to the state-of-the-art approaches

    Chinese text chunking using lexicalized HMMS

    Get PDF
    This paper presents a lexicalized HMM-based approach to Chinese text chunking. To tackle the problem of unknown words, we formalize Chinese text chunking as a tagging task on a sequence of known words. To do this, we employ the uniformly lexicalized HMMs and develop a lattice-based tagger to assign each known word a proper hybrid tag, which involves four types of information: word boundary, POS, chunk boundary and chunk type. In comparison with most previous approaches, our approach is able to integrate different features such as part-of-speech information, chunk-internal cues and contextual information for text chunking under the framework of HMMs. As a result, the performance of the system can be improved without losing its efficiency in training and tagging. Our preliminary experiments on the PolyU Shallow Treebank show that the use of lexicalization technique can substantially improve the performance of a HMM-based chunking system. © 2005 IEEE.published_or_final_versio
    • …
    corecore