221 research outputs found

    ATRW: A Benchmark for Amur Tiger Re-identification in the Wild

    Full text link
    Monitoring the population and movements of endangered species is an important task to wildlife conversation. Traditional tagging methods do not scale to large populations, while applying computer vision methods to camera sensor data requires re-identification (re-ID) algorithms to obtain accurate counts and moving trajectory of wildlife. However, existing re-ID methods are largely targeted at persons and cars, which have limited pose variations and constrained capture environments. This paper tries to fill the gap by introducing a novel large-scale dataset, the Amur Tiger Re-identification in the Wild (ATRW) dataset. ATRW contains over 8,000 video clips from 92 Amur tigers, with bounding box, pose keypoint, and tiger identity annotations. In contrast to typical re-ID datasets, the tigers are captured in a diverse set of unconstrained poses and lighting conditions. We demonstrate with a set of baseline algorithms that ATRW is a challenging dataset for re-ID. Lastly, we propose a novel method for tiger re-identification, which introduces precise pose parts modeling in deep neural networks to handle large pose variation of tigers, and reaches notable performance improvement over existing re-ID methods. The dataset is public available at https://cvwc2019.github.io/ .Comment: ACM Multimedia (MM) 202

    Robust Re-Identification by Multiple Views Knowledge Distillation

    Get PDF
    To achieve robustness in Re-Identification, standard methods leverage tracking information in a Video-To-Video fashion. However, these solutions face a large drop in performance for single image queries (e.g., Image-To-Video setting). Recent works address this severe degradation by transferring temporal information from a Video-based network to an Image-based one. In this work, we devise a training strategy that allows the transfer of a superior knowledge, arising from a set of views depicting the target object. Our proposal - Views Knowledge Distillation (VKD) - pins this visual variety as a supervision signal within a teacher-student framework, where the teacher educates a student who observes fewer views. As a result, the student outperforms not only its teacher but also the current state-of-the-art in Image-To-Video by a wide margin (6.3% mAP on MARS, 8.6% on Duke-Video-ReId and 5% on VeRi-776). A thorough analysis - on Person, Vehicle and Animal Re-ID - investigates the properties of VKD from a qualitatively and quantitatively perspective

    Combining feature aggregation and geometric similarity for re-identification of patterned animals

    Full text link
    Image-based re-identification of animal individuals allows gathering of information such as migration patterns of the animals over time. This, together with large image volumes collected using camera traps and crowdsourcing, opens novel possibilities to study animal populations. For many species, the re-identification can be done by analyzing the permanent fur, feather, or skin patterns that are unique to each individual. In this paper, we address the re-identification by combining two types of pattern similarity metrics: 1) pattern appearance similarity obtained by pattern feature aggregation and 2) geometric pattern similarity obtained by analyzing the geometric consistency of pattern similarities. The proposed combination allows to efficiently utilize both the local and global pattern features, providing a general re-identification approach that can be applied to a wide variety of different pattern types. In the experimental part of the work, we demonstrate that the method achieves promising re-identification accuracies for Saimaa ringed seals and whale sharks.Comment: Camera traps, AI, and Ecology, 3rd International Worksho

    Extracting Accurate Long-Term Behavior Changes from a Large Pig Dataset

    Get PDF
    Visual observation of uncontrolled real-world behavior leads to noisy observations, complicated by occlusions, ambiguity, variable motion rates, detection and tracking errors, slow transitions between behaviors, etc. We show in this paper that reliable estimates of long-term trends can be extracted given enough data, even though estimates from individual frames may be noisy. We validate this concept using a new public dataset of approximately 20+ million daytime pig observations over 6 weeks of their main growth stage, and we provide annotations for various tasks including 5 individual behaviors. Our pipeline chains detection, tracking and behavior classification combining deep and shallow computer vision techniques. While individual detections may be noisy, we show that long-term behavior changes can still be extracted reliably, and we validate these results qualitatively on the full dataset. Eventually, starting from raw RGB video data we are able to both tell what pigs main daily activities are, and how these change through time

    Towards Automatic Honey Bee Flower-Patch Assays with Paint Marking Re-Identification

    Full text link
    In this paper, we show that paint markings are a feasible approach to automatize the analysis of behavioral assays involving honey bees in the field where marking has to be as lightweight as possible. We contribute a novel dataset for bees re-identification with paint-markings with 4392 images and 27 identities. Contrastive learning with a ResNet backbone and triplet loss led to identity representation features with almost perfect recognition in closed setting where identities are known in advance. Diverse experiments evaluate the capability to generalize to separate IDs, and show the impact of using different body parts for identification, such as using the unmarked abdomen only. In addition, we show the potential to fully automate the visit detection and provide preliminary results of compute time for future real-time deployment in the field on an edge device.Comment: Paper 17, workshop "CV4Animals: Computer Vision for Animal Behavior Tracking and Modeling", in conjunction with Computer Vision and Pattern Recognition (CVPR 2023), June 18, 2023, Vancouver, Canad
    • …
    corecore