944 research outputs found

    Accelerated face detector training using the PSL framework

    Get PDF
    We train a face detection system using the PSL framework [1] which combines the AdaBoost learning algorithm and Haar-like features. We demonstrate the ability of this framework to overcome some of the challenges inherent in training classifiers that are structured in cascades of boosted ensembles (CoBE). The PSL classifiers are compared to the Viola-Jones type cas- caded classifiers. We establish the ability of the PSL framework to produce classifiers in a complex domain in significantly reduced time frame. They also comprise of fewer boosted en- sembles albeit at a price of increased false detection rates on our test dataset. We also report on results from a more diverse number of experiments carried out on the PSL framework in order to shed more insight into the effects of variations in its adjustable training parameters

    Spatiotemporal Stacked Sequential Learning for Pedestrian Detection

    Full text link
    Pedestrian classifiers decide which image windows contain a pedestrian. In practice, such classifiers provide a relatively high response at neighbor windows overlapping a pedestrian, while the responses around potential false positives are expected to be lower. An analogous reasoning applies for image sequences. If there is a pedestrian located within a frame, the same pedestrian is expected to appear close to the same location in neighbor frames. Therefore, such a location has chances of receiving high classification scores during several frames, while false positives are expected to be more spurious. In this paper we propose to exploit such correlations for improving the accuracy of base pedestrian classifiers. In particular, we propose to use two-stage classifiers which not only rely on the image descriptors required by the base classifiers but also on the response of such base classifiers in a given spatiotemporal neighborhood. More specifically, we train pedestrian classifiers using a stacked sequential learning (SSL) paradigm. We use a new pedestrian dataset we have acquired from a car to evaluate our proposal at different frame rates. We also test on a well known dataset: Caltech. The obtained results show that our SSL proposal boosts detection accuracy significantly with a minimal impact on the computational cost. Interestingly, SSL improves more the accuracy at the most dangerous situations, i.e. when a pedestrian is close to the camera.Comment: 8 pages, 5 figure, 1 tabl

    Physical Representation-based Predicate Optimization for a Visual Analytics Database

    Full text link
    Querying the content of images, video, and other non-textual data sources requires expensive content extraction methods. Modern extraction techniques are based on deep convolutional neural networks (CNNs) and can classify objects within images with astounding accuracy. Unfortunately, these methods are slow: processing a single image can take about 10 milliseconds on modern GPU-based hardware. As massive video libraries become ubiquitous, running a content-based query over millions of video frames is prohibitive. One promising approach to reduce the runtime cost of queries of visual content is to use a hierarchical model, such as a cascade, where simple cases are handled by an inexpensive classifier. Prior work has sought to design cascades that optimize the computational cost of inference by, for example, using smaller CNNs. However, we observe that there are critical factors besides the inference time that dramatically impact the overall query time. Notably, by treating the physical representation of the input image as part of our query optimization---that is, by including image transforms, such as resolution scaling or color-depth reduction, within the cascade---we can optimize data handling costs and enable drastically more efficient classifier cascades. In this paper, we propose Tahoma, which generates and evaluates many potential classifier cascades that jointly optimize the CNN architecture and input data representation. Our experiments on a subset of ImageNet show that Tahoma's input transformations speed up cascades by up to 35 times. We also find up to a 98x speedup over the ResNet50 classifier with no loss in accuracy, and a 280x speedup if some accuracy is sacrificed.Comment: Camera-ready version of the paper submitted to ICDE 2019, In Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE 2019

    Crosstalk Cascades for Frame-rate Pedestrian Detection

    Get PDF
    Cascades help make sliding window object detection fast, nevertheless, computational demands remain prohibitive for numerous applications. Currently, evaluation of adjacent windows proceeds independently; this is suboptimal as detector responses at nearby locations and scales are correlated. We propose to exploit these correlations by tightly coupling detector evaluation of nearby windows. We introduce two opposing mechanisms: detector excitation of promising neighbors and inhibition of inferior neighbors. By enabling neighboring detectors to communicate, crosstalk cascades achieve major gains (4-30x speedup) over cascades evaluated independently at each image location. Combined with recent advances in fast multi-scale feature computation, for which we provide an optimized implementation, our approach runs at 35-65 fps on 640 x 480 images while attaining state-of-the-art accuracy

    Learning Dynamic Feature Selection for Fast Sequential Prediction

    Full text link
    We present paired learning and inference algorithms for significantly reducing computation and increasing speed of the vector dot products in the classifiers that are at the heart of many NLP components. This is accomplished by partitioning the features into a sequence of templates which are ordered such that high confidence can often be reached using only a small fraction of all features. Parameter estimation is arranged to maximize accuracy and early confidence in this sequence. Our approach is simpler and better suited to NLP than other related cascade methods. We present experiments in left-to-right part-of-speech tagging, named entity recognition, and transition-based dependency parsing. On the typical benchmarking datasets we can preserve POS tagging accuracy above 97% and parsing LAS above 88.5% both with over a five-fold reduction in run-time, and NER F1 above 88 with more than 2x increase in speed.Comment: Appears in The 53rd Annual Meeting of the Association for Computational Linguistics, Beijing, China, July 201
    • …
    corecore