249 research outputs found

    Weakly supervised 3D Reconstruction with Adversarial Constraint

    Full text link
    Supervised 3D reconstruction has witnessed a significant progress through the use of deep neural networks. However, this increase in performance requires large scale annotations of 2D/3D data. In this paper, we explore inexpensive 2D supervision as an alternative for expensive 3D CAD annotation. Specifically, we use foreground masks as weak supervision through a raytrace pooling layer that enables perspective projection and backpropagation. Additionally, since the 3D reconstruction from masks is an ill posed problem, we propose to constrain the 3D reconstruction to the manifold of unlabeled realistic 3D shapes that match mask observations. We demonstrate that learning a log-barrier solution to this constrained optimization problem resembles the GAN objective, enabling the use of existing tools for training GANs. We evaluate and analyze the manifold constrained reconstruction on various datasets for single and multi-view reconstruction of both synthetic and real images

    Simplifying syntactic and semantic parsing of NL-based queries in advanced application domains

    Get PDF
    The paper presents a high level query language (MDDQL) for databases, which relies on an ontology driven automaton. This is simulated by the human-computer interaction mode for the query construction process, which is driven by an inference engine operating upon a frames based ontology description. Therefore, given that the query construction process implicitly leads to the contemporary construction of high level query trees prior to submission of the query for transformation and execution to a semantic middle-ware, syntactic and semantic parsing of a query with conventional techniques, i.e., after completion of its formulation, becomes obsolete. To this extent, only, as meaningful as possible, queries can be constructed at a low typing, learning, syntactic and semantic parsing effort and regardless the preferred natural (sub)language. From a linguistics point o view, it turns out that the query construction mechanism can easily be adapted and work with families of natural languages, which underlie another type order such as Subject-Object-Verb as opposed to the typical Subject-Verb-Object type order, which underlie most European languages. The query construction mechanism has been proved as practical in advanced application domains, such as those provided by medical applications, with an advanced and hardly understood terminology for naive users and the public

    Datasets for generic relation extraction

    Get PDF
    A vast amount of usable electronic data is in the form of unstructured text. The relation extraction task aims to identify useful information in text (e.g. PersonW works for OrganisationX, GeneY encodes ProteinZ) and recode it in a format such as a relational database or RDF triplestore that can be more effectively used for querying and automated reasoning. A number of resources have been developed for training and evaluating automatic systems for relation extraction in different domains. However, comparative evaluation is impeded by the fact that these corpora use different markup formats and notions of what constitutes a relation. We describe the preparation of corpora for comparative evaluation of relation extraction across domains based on the publicly available ACE 2004, ACE 2005 and BioInfer data sets. We present a common document type using token standoff and including detailed linguistic markup, while maintaining all information in the original annotation. The subsequent reannotation process normalises the two data sets so that they comply with a notion of relation that is intuitive, simple and informed by the semantic web. For the ACE data, we describe an automatic process that automatically converts many relations involving nested, nominal entity mentions to relations involving non-nested, named or pronominal entity mentions. For example, the first entity is mapped from 'one' to 'Amidu Berry' in the membership relation described in 'Amidu Berry, one half of PBS'. Moreover, we describe a comparably reannotated version of the BioInfer corpus that flattens nested relations, maps part-whole to part-part relations and maps n-ary to binary relations. Finally, we summarise experiments that compare approaches to generic relation extraction, a knowledge discovery task that uses minimally supervised techniques to achieve maximally portable extractors. These experiments illustrate the utility of the corpora.39 page(s
    • …
    corecore