30,284 research outputs found

    Amalia -- A Unified Platform for Parsing and Generation

    Full text link
    Contemporary linguistic theories (in particular, HPSG) are declarative in nature: they specify constraints on permissible structures, not how such structures are to be computed. Grammars designed under such theories are, therefore, suitable for both parsing and generation. However, practical implementations of such theories don't usually support bidirectional processing of grammars. We present a grammar development system that includes a compiler of grammars (for parsing and generation) to abstract machine instructions, and an interpreter for the abstract machine language. The generation compiler inverts input grammars (designed for parsing) to a form more suitable for generation. The compiled grammars are then executed by the interpreter using one control strategy, regardless of whether the grammar is the original or the inverted version. We thus obtain a unified, efficient platform for developing reversible grammars.Comment: 8 pages postscrip

    A Robust Parsing Algorithm For Link Grammars

    Full text link
    In this paper we present a robust parsing algorithm based on the link grammar formalism for parsing natural languages. Our algorithm is a natural extension of the original dynamic programming recognition algorithm which recursively counts the number of linkages between two words in the input sentence. The modified algorithm uses the notion of a null link in order to allow a connection between any pair of adjacent words, regardless of their dictionary definitions. The algorithm proceeds by making three dynamic programming passes. In the first pass, the input is parsed using the original algorithm which enforces the constraints on links to ensure grammaticality. In the second pass, the total cost of each substring of words is computed, where cost is determined by the number of null links necessary to parse the substring. The final pass counts the total number of parses with minimal cost. All of the original pruning techniques have natural counterparts in the robust algorithm. When used together with memoization, these techniques enable the algorithm to run efficiently with cubic worst-case complexity. We have implemented these ideas and tested them by parsing the Switchboard corpus of conversational English. This corpus is comprised of approximately three million words of text, corresponding to more than 150 hours of transcribed speech collected from telephone conversations restricted to 70 different topics. Although only a small fraction of the sentences in this corpus are "grammatical" by standard criteria, the robust link grammar parser is able to extract relevant structure for a large portion of the sentences. We present the results of our experiments using this system, including the analyses of selected and random sentences from the corpus.Comment: 17 pages, compressed postscrip

    Evaluating two methods for Treebank grammar compaction

    Get PDF
    Treebanks, such as the Penn Treebank, provide a basis for the automatic creation of broad coverage grammars. In the simplest case, rules can simply be ‘read off’ the parse-annotations of the corpus, producing either a simple or probabilistic context-free grammar. Such grammars, however, can be very large, presenting problems for the subsequent computational costs of parsing under the grammar. In this paper, we explore ways by which a treebank grammar can be reduced in size or ‘compacted’, which involve the use of two kinds of technique: (i) thresholding of rules by their number of occurrences; and (ii) a method of rule-parsing, which has both probabilistic and non-probabilistic variants. Our results show that by a combined use of these two techniques, a probabilistic context-free grammar can be reduced in size by 62% without any loss in parsing performance, and by 71% to give a gain in recall, but some loss in precision
    • …
    corecore