346 research outputs found

    Dense Piecewise Planar RGB-D SLAM for Indoor Environments

    Full text link
    The paper exploits weak Manhattan constraints to parse the structure of indoor environments from RGB-D video sequences in an online setting. We extend the previous approach for single view parsing of indoor scenes to video sequences and formulate the problem of recovering the floor plan of the environment as an optimal labeling problem solved using dynamic programming. The temporal continuity is enforced in a recursive setting, where labeling from previous frames is used as a prior term in the objective function. In addition to recovery of piecewise planar weak Manhattan structure of the extended environment, the orthogonality constraints are also exploited by visual odometry and pose graph optimization. This yields reliable estimates in the presence of large motions and absence of distinctive features to track. We evaluate our method on several challenging indoors sequences demonstrating accurate SLAM and dense mapping of low texture environments. On existing TUM benchmark we achieve competitive results with the alternative approaches which fail in our environments.Comment: International Conference on Intelligent Robots and Systems (IROS) 201

    Multi-View Deep Learning for Consistent Semantic Mapping with RGB-D Cameras

    Full text link
    Visual scene understanding is an important capability that enables robots to purposefully act in their environment. In this paper, we propose a novel approach to object-class segmentation from multiple RGB-D views using deep learning. We train a deep neural network to predict object-class semantics that is consistent from several view points in a semi-supervised way. At test time, the semantics predictions of our network can be fused more consistently in semantic keyframe maps than predictions of a network trained on individual views. We base our network architecture on a recent single-view deep learning approach to RGB and depth fusion for semantic object-class segmentation and enhance it with multi-scale loss minimization. We obtain the camera trajectory using RGB-D SLAM and warp the predictions of RGB-D images into ground-truth annotated frames in order to enforce multi-view consistency during training. At test time, predictions from multiple views are fused into keyframes. We propose and analyze several methods for enforcing multi-view consistency during training and testing. We evaluate the benefit of multi-view consistency training and demonstrate that pooling of deep features and fusion over multiple views outperforms single-view baselines on the NYUDv2 benchmark for semantic segmentation. Our end-to-end trained network achieves state-of-the-art performance on the NYUDv2 dataset in single-view segmentation as well as multi-view semantic fusion.Comment: the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017

    Behind Every Domain There is a Shift: Adapting Distortion-aware Vision Transformers for Panoramic Semantic Segmentation

    Full text link
    In this paper, we address panoramic semantic segmentation which is under-explored due to two critical challenges: (1) image distortions and object deformations on panoramas; (2) lack of semantic annotations in the 360-degree imagery. To tackle these problems, first, we propose the upgraded Transformer for Panoramic Semantic Segmentation, i.e., Trans4PASS+, equipped with Deformable Patch Embedding (DPE) and Deformable MLP (DMLPv2) modules for handling object deformations and image distortions whenever (before or after adaptation) and wherever (shallow or deep levels). Second, we enhance the Mutual Prototypical Adaptation (MPA) strategy via pseudo-label rectification for unsupervised domain adaptive panoramic segmentation. Third, aside from Pinhole-to-Panoramic (Pin2Pan) adaptation, we create a new dataset (SynPASS) with 9,080 panoramic images, facilitating Synthetic-to-Real (Syn2Real) adaptation scheme in 360-degree imagery. Extensive experiments are conducted, which cover indoor and outdoor scenarios, and each of them is investigated with Pin2Pan and Syn2Real regimens. Trans4PASS+ achieves state-of-the-art performances on four domain adaptive panoramic semantic segmentation benchmarks. Code is available at https://github.com/jamycheung/Trans4PASS.Comment: Extended version of CVPR 2022 paper arXiv:2203.01452. Code is available at https://github.com/jamycheung/Trans4PAS

    Synthesizing Training Data for Object Detection in Indoor Scenes

    Full text link
    Detection of objects in cluttered indoor environments is one of the key enabling functionalities for service robots. The best performing object detection approaches in computer vision exploit deep Convolutional Neural Networks (CNN) to simultaneously detect and categorize the objects of interest in cluttered scenes. Training of such models typically requires large amounts of annotated training data which is time consuming and costly to obtain. In this work we explore the ability of using synthetically generated composite images for training state-of-the-art object detectors, especially for object instance detection. We superimpose 2D images of textured object models into images of real environments at variety of locations and scales. Our experiments evaluate different superimposition strategies ranging from purely image-based blending all the way to depth and semantics informed positioning of the object models into real scenes. We demonstrate the effectiveness of these object detector training strategies on two publicly available datasets, the GMU-Kitchens and the Washington RGB-D Scenes v2. As one observation, augmenting some hand-labeled training data with synthetic examples carefully composed onto scenes yields object detectors with comparable performance to using much more hand-labeled data. Broadly, this work charts new opportunities for training detectors for new objects by exploiting existing object model repositories in either a purely automatic fashion or with only a very small number of human-annotated examples.Comment: Added more experiments and link to project webpag
    corecore