6,022 research outputs found

    Abstract Syntax Networks for Code Generation and Semantic Parsing

    Full text link
    Tasks like code generation and semantic parsing require mapping unstructured (or partially structured) inputs to well-formed, executable outputs. We introduce abstract syntax networks, a modeling framework for these problems. The outputs are represented as abstract syntax trees (ASTs) and constructed by a decoder with a dynamically-determined modular structure paralleling the structure of the output tree. On the benchmark Hearthstone dataset for code generation, our model obtains 79.2 BLEU and 22.7% exact match accuracy, compared to previous state-of-the-art values of 67.1 and 6.1%. Furthermore, we perform competitively on the Atis, Jobs, and Geo semantic parsing datasets with no task-specific engineering.Comment: ACL 2017. MR and MS contributed equall

    Monadic parser combinators

    Get PDF
    In functional programming, a popular approach to building recursive descent parsers is to model parsers as functions, and to define higher-order functions (or combinators) that implement grammar constructions such as sequencing, choice, and repetition. Such parsers form an instance of a monad, an algebraic structure from mathematics that has proved useful for addressing a number of computational problems. The purpose of this report is to provide a step-by-step tutorial on the monadic approach to building functional parsers, and to explain some of the benefits that result from exploiting monads. No prior knowledge of parser combinators or of monads is assumed. Indeed, this report can also be viewed as a first introduction to the use of monads in programming

    Certified Context-Free Parsing: A formalisation of Valiant's Algorithm in Agda

    Get PDF
    Valiant (1975) has developed an algorithm for recognition of context free languages. As of today, it remains the algorithm with the best asymptotic complexity for this purpose. In this paper, we present an algebraic specification, implementation, and proof of correctness of a generalisation of Valiant's algorithm. The generalisation can be used for recognition, parsing or generic calculation of the transitive closure of upper triangular matrices. The proof is certified by the Agda proof assistant. The certification is representative of state-of-the-art methods for specification and proofs in proof assistants based on type-theory. As such, this paper can be read as a tutorial for the Agda system

    Code improvements towards implementing HEVC decoder

    Get PDF

    Renaming Global Variables in C Mechanically Proved Correct

    Get PDF
    Most integrated development environments are shipped with refactoring tools. However, their refactoring operations are often known to be unreliable. As a consequence, developers have to test their code after applying an automatic refactoring. In this article, we consider a refactoring operation (renaming of global variables in C), and we prove that its core implementation preserves the set of possible behaviors of transformed programs. That proof of correctness relies on the operational semantics of C provided by CompCert C in Coq.Comment: In Proceedings VPT 2016, arXiv:1607.0183
    • …
    corecore