288 research outputs found

    ANN for Parkinson’s Disease Prediction

    Get PDF
    Parkinson's Disease (PD) is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms generally come on slowly over time. Early in the disease, the most obvious are shaking, rigidity, slowness of movement, and difficulty with walking. Doctors do not know what causes it and finds difficulty in early diagnosing the presence of Parkinson’s disease. An artificial neural network system with back propagation algorithm is presented in this paper for helping doctors in identifying PD. Previous research with regards to predict the presence of the PD has shown accuracy rates up to 93% [1]; however, accuracy of prediction for small classes is reduced. The proposed design of the neural network system causes a significant increase of robustness. It is also has shown that networks recognition rates reached 100%

    CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC

    Get PDF
    Parkinson's disease is a recognizable clinical syndrome with a variety of causes and clinical presentations; it represents a rapidly growing neurodegenerative disorder. Since about 90 percent of Parkinson's disease sufferers have some form of early speech impairment, recent studies on tele diagnosis of Parkinson's disease have focused on the recognition of voice impairments from vowel phonations or the subjects' discourse. In this paper, we present a new approach for Parkinson's disease detection from speech sounds that are based on CNN and LSTM and uses two categories of characteristics Mel Frequency Cepstral Coefficients (MFCC) and Gammatone Cepstral Coefficients (GTCC) obtained from noise-removed speech signals with comparative EMD-DWT and DWT-EMD analysis. The proposed model is divided into three stages. In the first step, noise is removed from the signals using the EMD-DWT and DWT-EMD methods. In the second step, the GTCC and MFCC are extracted from the enhanced audio signals. The classification process is carried out in the third step by feeding these features into the LSTM and CNN models, which are designed to define sequential information from the extracted features. The experiments are performed using PC-GITA and Sakar datasets and 10-fold cross validation method, the highest classification accuracy for the Sakar dataset reached 100% for both EMD-DWT-GTCC-CNN and DWT-EMD-GTCC-CNN, and for the PC-GITA dataset, the accuracy is reached 100% for EMD-DWT-GTCC-CNN and 96.55% for DWT-EMD-GTCC-CNN. The results of this study indicate that the characteristics of GTCC are more appropriate and accurate for the assessment of PD than MFCC

    Lemon Classification Using Deep Learning

    Get PDF
    Abstract : Background: Vegetable agriculture is very important to human continued existence and remains a key driver of many economies worldwide, especially in underdeveloped and developing economies. Objectives: There is an increasing demand for food and cash crops, due to the increasing in world population and the challenges enforced by climate modifications, there is an urgent need to increase plant production while reducing costs. Methods: In this paper, Lemon classification approach is presented with a dataset that contains approximately 2,000 images belong to 3 species at a few developing phases. Convolutional Neural Network (CNN) algorithms, a deep learning technique extensively applied to image recognition was used, for this task. The results: found that CNN-driven lemon classification applications when used in farming automation have the latent to enhance crop harvest and improve output and productivity when designed properly. The trained model achieved an accuracy of 99.48% on a held-out test set, demonstrating the feasibility of this approach

    Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review

    Get PDF
    Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions

    Early Detection of Parkinson Disease using Voice Data

    Get PDF
    Parkinson’s disease affects over 10 million people worldwide, with approximately 20 percent of patients not being diagnosed. Clinical diagnosis is expensive because there are no specific tests or bio-markers, and it can take days to diagnose because it is based on a comprehensive evaluation of the individual’s symptoms. Existing research either predicts a Unified Parkinson Disease Rating Scale rating, uses other key Parkinsonian features to diagnose an individual, such as tapping, gait, and tremor, or focuses on different audio features. In this paper, we are focusing on using the voice aspect for the early detection of the disease. We use the University of California Irvine (UCI) Parkinson data set. This data set contains various parameters regarding voice jitter. The data set first undergoes preprocessing. We have used a Feedforward Neural Network (FNN) model to acquire early on detection using the above data set. Our model has achieved an efficiency of 97.43 percent. This efficiency can be improved by using even a larger and diverse data set

    Classification of Alzheimer’s and Parkinson’s Disease Based on VGG19 Features with Batch Normalization

    Get PDF
    Dementia is a condition when thinking, reasoning and memory skills are lost and patients have emotional instability and personality changes. Researchers are looking into how the underlying disease processes that lead to various kinds of dementia begin and interact. Additionally, they keep researching the various diseases and conditions that cause dementia. Alzheimer’s and Parkinson's disease contribute to dementia development. Recently deep learning-based techniques have surpassed the performance of traditional algorithms in the field of machine vision, image detection, natural language handling, object detection, and medical image analysis. This study proposed a transfer learning-based model for Parkinson’s and Alzheimer’s disease classification from slices of MRI. Pretrained VGG19 with Batch normalization is used for feature extraction and the final dense (fully connected-FC) layers are fine-tuned to meet our requirements. The performance of the model is analyzed by varying hyperparameters. The proposed model outperformed other pre-trained CNN models by achieving an accuracy of 97.19%

    Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients

    Get PDF
    Dissertation presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in Knowledge Management and Business IntelligenceData representation is one of the fundamental concepts in machine learning. An appropriate representation is found by discovering a structure and automatic detection of patterns in data. In many domains, representation or feature learning is a critical step in improving the performance of machine learning algorithms due to the multidimensionality of data that feeds the model. Some tasks may have different perspectives and approaches depending on how data is represented. In recent years, deep artificial neural networks have provided better solutions to several pattern recognition problems and classification tasks. Deep architectures have also shown their effectiveness in capturing latent features for data representation. In this document, autoencoders will be examined to obtain the representation of Parkinson's disease patients and compared with conventional representation learning algorithms. The results will show whether the proposed method of feature selection leads to the desired accuracy for predicting the severity of Parkinson’s disease

    Type of Tomato Classification Using Deep Learning

    Get PDF
    Abstract: Tomatoes are part of the major crops in food security. Tomatoes are plants grown in temperate and hot regions of South American origin from Peru, and then spread to most countries of the world. Tomatoes contain a lot of vitamin C and mineral salts, and are recommended for people with constipation, diabetes and patients with heart and body diseases. Studies and scientific studies have proven the importance of eating tomato juice in reducing the activity of platelets in diabetics, which helps in protecting them from developing deadly blood clots. A tomato classification approach is presented with a data set containing approximately 5,266 images with 7 species belonging to tomatoes. The Neural Network Algorithms (CNN), a deep learning technique applied widely in image recognition, is used for this task
    • …
    corecore