463 research outputs found

    Parity of paths and circuits in tournaments

    Get PDF

    Embedding Four-directional Paths on Convex Point Sets

    Full text link
    A directed path whose edges are assigned labels "up", "down", "right", or "left" is called \emph{four-directional}, and \emph{three-directional} if at most three out of the four labels are used. A \emph{direction-consistent embedding} of an \mbox{nn-vertex} four-directional path PP on a set SS of nn points in the plane is a straight-line drawing of PP where each vertex of PP is mapped to a distinct point of SS and every edge points to the direction specified by its label. We study planar direction-consistent embeddings of three- and four-directional paths and provide a complete picture of the problem for convex point sets.Comment: 11 pages, full conference version including all proof

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Largest Digraphs Contained IN All N-tournaments

    Get PDF
    Let f(n) (resp. g(n)) be the largest m such that there is a digraph (resp. a spanning weakly connected digraph) on n-vertices and m edges which is a subgraph of every tournament on n-vertices. We prove that n log2 n--cxn>=f(n) ~_g(n) ~- n log ~ n--c..n loglog n

    Arc Reversals in Tournaments.

    Get PDF

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments

    Get PDF
    A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. This enables us to obtain numerous further results, e.g. as a special case we confirm a conjecture of Erdos on packing Hamilton cycles in random tournaments. As corollaries to the main result, we also obtain several results on packing Hamilton cycles in undirected graphs, giving e.g. the best known result on a conjecture of Nash-Williams. We also apply our result to solve a problem on the domination ratio of the Asymmetric Travelling Salesman problem, which was raised e.g. by Glover and Punnen as well as Alon, Gutin and Krivelevich.Comment: new version includes a standalone version of the `robust decomposition lemma' for application in subsequent paper

    Oriented trees and paths in digraphs

    Full text link
    Which conditions ensure that a digraph contains all oriented paths of some given length, or even a all oriented trees of some given size, as a subgraph? One possible condition could be that the host digraph is a tournament of a certain order. In arbitrary digraphs and oriented graphs, conditions on the chromatic number, on the edge density, on the minimum outdegree and on the minimum semidegree have been proposed. In this survey, we review the known results, and highlight some open questions in the area
    • …
    corecore