626 research outputs found

    Spindle configurations of skew lines

    Full text link
    We prove a conjecture of Crapo and Penne which characterizes isotopy classes of skew configurations with spindle-structure. We use this result in order to define an invariant, spindle-genus, for spindle-configurations. We also slightly simplify the exposition of some known invariants for configurations of skew lines and use them to define a natural partition of the lines in a skew configuration. Finally, we describe an algorithm which constructs a spindle in a given switching class, or proves non-existence of such a spindle.Comment: 42 pages, many figures. A new corrected proof of a conjecture of Crapo and Penne is added. More new material is also adde

    Graph parameters from symplectic group invariants

    Full text link
    In this paper we introduce, and characterize, a class of graph parameters obtained from tensor invariants of the symplectic group. These parameters are similar to partition functions of vertex models, as introduced by de la Harpe and Jones, [P. de la Harpe, V.F.R. Jones, Graph invariants related to statistical mechanical models: examples and problems, Journal of Combinatorial Theory, Series B 57 (1993) 207-227]. Yet they give a completely different class of graph invariants. We moreover show that certain evaluations of the cycle partition polynomial, as defined by Martin [P. Martin, Enum\'erations eul\'eriennes dans les multigraphes et invariants de Tutte-Grothendieck, Diss. Institut National Polytechnique de Grenoble-INPG; Universit\'e Joseph-Fourier-Grenoble I, 1977], give examples of graph parameters that can be obtained this way.Comment: Some corrections have been made on the basis of referee comments. 21 pages, 1 figure. Accepted in JCT

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure
    corecore