2,217 research outputs found

    Low Density Lattice Codes

    Full text link
    Low density lattice codes (LDLC) are novel lattice codes that can be decoded efficiently and approach the capacity of the additive white Gaussian noise (AWGN) channel. In LDLC a codeword x is generated directly at the n-dimensional Euclidean space as a linear transformation of a corresponding integer message vector b, i.e., x = Gb, where H, the inverse of G, is restricted to be sparse. The fact that H is sparse is utilized to develop a linear-time iterative decoding scheme which attains, as demonstrated by simulations, good error performance within ~0.5dB from capacity at block length of n = 100,000 symbols. The paper also discusses convergence results and implementation considerations.Comment: 24 pages, 4 figures. Submitted for publication in IEEE transactions on Information Theor

    Decoding Schemes for Foliated Sparse Quantum Error Correcting Codes

    Get PDF
    Foliated quantum codes are a resource for fault-tolerant measurement-based quantum error correction for quantum repeaters and for quantum computation. They represent a general approach to integrating a range of possible quantum error correcting codes into larger fault-tolerant networks. Here we present an efficient heuristic decoding scheme for foliated quantum codes, based on message passing between primal and dual code 'sheets'. We test this decoder on two different families of sparse quantum error correcting code: turbo codes and bicycle codes, and show reasonably high numerical performance thresholds. We also present a construction schedule for building such code states.Comment: 23 pages, 15 figures, accepted for publication in Phys. Rev.

    Wigner function negativity and contextuality in quantum computation on rebits

    Full text link
    We describe a universal scheme of quantum computation by state injection on rebits (states with real density matrices). For this scheme, we establish contextuality and Wigner function negativity as computational resources, extending results of [M. Howard et al., Nature 510, 351--355 (2014)] to two-level systems. For this purpose, we define a Wigner function suited to systems of nn rebits, and prove a corresponding discrete Hudson's theorem. We introduce contextuality witnesses for rebit states, and discuss the compatibility of our result with state-independent contextuality.Comment: 18 + 4 page

    Fault-tolerance in two-dimensional topological systems

    Get PDF
    This thesis is a collection of ideas with the general goal of building, at least in the abstract, a local fault-tolerant quantum computer. The connection between quantum information and topology has proven to be an active area of research in several fields. The introduction of the toric code by Alexei Kitaev demonstrated the usefulness of topology for quantum memory and quantum computation. Many quantum codes used for quantum memory are modeled by spin systems on a lattice, with operators that extract syndrome information placed on vertices or faces of the lattice. It is natural to wonder whether the useful codes in such systems can be classified. This thesis presents work that leverages ideas from topology and graph theory to explore the space of such codes. Homological stabilizer codes are introduced and it is shown that, under a set of reasonable assumptions, any qubit homological stabilizer code is equivalent to either a toric code or a color code. Additionally, the toric code and the color code correspond to distinct classes of graphs. Many systems have been proposed as candidate quantum computers. It is very desirable to design quantum computing architectures with two-dimensional layouts and low complexity in parity-checking circuitry. Kitaev\u27s surface codes provided the first example of codes satisfying this property. They provided a new route to fault tolerance with more modest overheads and thresholds approaching 1%. The recently discovered color codes share many properties with the surface codes, such as the ability to perform syndrome extraction locally in two dimensions. Some families of color codes admit a transversal implementation of the entire Clifford group. This work investigates color codes on the 4.8.8 lattice known as triangular codes. I develop a fault-tolerant error-correction strategy for these codes in which repeated syndrome measurements on this lattice generate a three-dimensional space-time combinatorial structure. I then develop an integer program that analyzes this structure and determines the most likely set of errors consistent with the observed syndrome values. I implement this integer program to find the threshold for depolarizing noise on small versions of these triangular codes. Because the threshold for magic-state distillation is likely to be higher than this value and because logical CNOT gates can be performed by code deformation in a single block instead of between pairs of blocks, the threshold for fault-tolerant quantum memory for these codes is also the threshold for fault-tolerant quantum computation with them. Since the advent of a threshold theorem for quantum computers much has been improved upon. Thresholds have increased, architectures have become more local, and gate sets have been simplified. The overhead for magic-state distillation has been studied, but not nearly to the extent of the aforementioned topics. A method for greatly reducing this overhead, known as reusable magic states, is studied here. While examples of reusable magic states exist for Clifford gates, I give strong reasons to believe they do not exist for non-Clifford gates

    Nonlocal Games and Quantum Permutation Groups

    Get PDF
    We present a strong connection between quantum information and quantum permutation groups. Specifically, we define a notion of quantum isomorphisms of graphs based on quantum automorphisms from the theory of quantum groups, and then show that this is equivalent to the previously defined notion of quantum isomorphism corresponding to perfect quantum strategies to the isomorphism game. Moreover, we show that two connected graphs XX and YY are quantum isomorphic if and only if there exists xV(X)x \in V(X) and yV(Y)y \in V(Y) that are in the same orbit of the quantum automorphism group of the disjoint union of XX and YY. This connection links quantum groups to the more concrete notion of nonlocal games and physically observable quantum behaviours. We exploit this link by using ideas and results from quantum information in order to prove new results about quantum automorphism groups, and about quantum permutation groups more generally. In particular, we show that asymptotically almost surely all graphs have trivial quantum automorphism group. Furthermore, we use examples of quantum isomorphic graphs from previous work to construct an infinite family of graphs which are quantum vertex transitive but fail to be vertex transitive, answering a question from the quantum group literature. Our main tool for proving these results is the introduction of orbits and orbitals (orbits on ordered pairs) of quantum permutation groups. We show that the orbitals of a quantum permutation group form a coherent configuration/algebra, a notion from the field of algebraic graph theory. We then prove that the elements of this quantum orbital algebra are exactly the matrices that commute with the magic unitary defining the quantum group. We furthermore show that quantum isomorphic graphs admit an isomorphism of their quantum orbital algebras which maps the adjacency matrix of one graph to that of the other.Comment: 39 page

    Single-qubit gate teleportation provides a quantum advantage

    Full text link
    Gate-teleportation circuits are arguably among the most basic examples of computations believed to provide a quantum computational advantage: In seminal work [Quantum Inf. Comput., 4(2):134--145], Terhal and DiVincenzo have shown that these circuits elude simulation by efficient classical algorithms under plausible complexity-theoretic assumptions. Here we consider possibilistic simulation [Phys. Rev. A 106, 062430 (2022)], a particularly weak form of this task where the goal is to output any string appearing with non-zero probability in the output distribution of the circuit. We show that even for single-qubit Clifford-gate-teleportation circuits this simulation problem cannot be solved by constant-depth classical circuits with bounded fan-in gates. Our results are unconditional and are obtained by a reduction to the problem of computing the parity, a well-studied problem in classical circuit complexity.Comment: 31 pages 10 figures. Typos fixed. New Section 3.3.3 Other word problems for Clifford modulo Pauli group

    Partitioning qubits in hypergraph product codes to implement logical gates

    Get PDF
    The promise of high-rate low-density parity check (LDPC) codes to substantially reduce the overhead of fault-tolerant quantum computation depends on constructing efficient, fault-tolerant implementations of logical gates on such codes. Transversal gates are the simplest type of fault-tolerant gate, but the potential of transversal gates on LDPC codes has hitherto been largely neglected. We investigate the transversal gates that can be implemented in hypergraph product codes, a class of LDPC codes. Our analysis is aided by the construction of a symplectic canonical basis for the logical operators of hypergraph product codes, a result that may be of independent interest. We show that in these codes transversal gates can implement Hadamard (up to logical SWAP gates) and control-Z on all logical qubits. Moreover, we show that sequences of transversal operations, interleaved with error correction, allow implementation of entangling gates between arbitrary pairs of logical qubits in the same code block. We thereby demonstrate that transversal gates can be used as the basis for universal quantum computing on LDPC codes, when supplemented with state injection
    corecore