1,398 research outputs found

    Time and Parallelizability Results for Parity Games with Bounded Tree and DAG Width

    Full text link
    Parity games are a much researched class of games in NP intersect CoNP that are not known to be in P. Consequently, researchers have considered specialised algorithms for the case where certain graph parameters are small. In this paper, we study parity games on graphs with bounded treewidth, and graphs with bounded DAG width. We show that parity games with bounded DAG width can be solved in O(n^(k+3) k^(k + 2) (d + 1)^(3k + 2)) time, where n, k, and d are the size, treewidth, and number of priorities in the parity game. This is an improvement over the previous best algorithm, given by Berwanger et al., which runs in n^O(k^2) time. We also show that, if a tree decomposition is provided, then parity games with bounded treewidth can be solved in O(n k^(k + 5) (d + 1)^(3k + 5)) time. This improves over previous best algorithm, given by Obdrzalek, which runs in O(n d^(2(k+1)^2)) time. Our techniques can also be adapted to show that the problem of solving parity games with bounded treewidth lies in the complexity class NC^2, which is the class of problems that can be efficiently parallelized. This is in stark contrast to the general parity game problem, which is known to be P-hard, and thus unlikely to be contained in NC

    New Deterministic Algorithms for Solving Parity Games

    Full text link
    We study parity games in which one of the two players controls only a small number kk of nodes and the other player controls the nkn-k other nodes of the game. Our main result is a fixed-parameter algorithm that solves bipartite parity games in time kO(k)O(n3)k^{O(\sqrt{k})}\cdot O(n^3), and general parity games in time (p+k)O(k)O(pnm)(p+k)^{O(\sqrt{k})} \cdot O(pnm), where pp is the number of distinct priorities and mm is the number of edges. For all games with k=o(n)k = o(n) this improves the previously fastest algorithm by Jurdzi{\'n}ski, Paterson, and Zwick (SICOMP 2008). We also obtain novel kernelization results and an improved deterministic algorithm for graphs with small average degree

    Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible

    Full text link
    We analyze the computational complexity of the many types of pencil-and-paper-style puzzles featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a simple path in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle types place different constraints on the path: preventing some edges from being visited (broken edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain numbers of incident path edges (triangles); or forcing the regions formed by the path to be partially monochromatic (squares), have exactly two special cells (stars), or be singly covered by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show that any one of these clue types (except the first) is enough to make path finding NP-complete ("witnesses exist but are hard to find"), even for rectangular boards. Furthermore, we show that a final clue type (antibody), which necessarily "cancels" the effect of another clue in the same region, makes path finding Σ2\Sigma_2-complete ("witnesses do not exist"), even with a single antibody (combined with many anti/polyominoes), and the problem gets no harder with many antibodies. On the positive side, we give a polynomial-time algorithm for monomino clues, by reducing to hexagon clues on the boundary of the puzzle, even in the presence of broken edges, and solving "subset Hamiltonian path" for terminals on the boundary of an embedded planar graph in polynomial time.Comment: 72 pages, 59 figures. Revised proof of Lemma 3.5. A short version of this paper appeared at the 9th International Conference on Fun with Algorithms (FUN 2018

    Solving parity games in big steps

    Get PDF
    This article proposes a new algorithm that improves the complexity bound for solving parity games. Our approach combines McNaughton's iterated fixed point algorithm with a preprocessing step, which is called prior to every recursive call. The preprocessing uses ranking functions similar to Jurdzifiski's, but with a restricted co-domain, to determine all winning regions smaller than a predefined parameter. The combination of the preprocessing step with the recursive call guarantees that McNaughton's algorithm proceeds in big steps, whose size is bounded from below by the chosen parameter. Higher parameters lead to smaller call trees, but they also result in an expensive preprocessing step. An optimal parameter balances the cost of the recursive call and the preprocessing step, resulting in an improvement of the known upper bound for solving parity games from O (m (2n/c)(1/2c))to approximately O (m (6e(1) ((6) over bar) n/c(2))(1/3c) )

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF
    corecore