673 research outputs found

    A comparison of crossover operators in neural network feature selection with multiobjective evolutionary algorithms

    Get PDF
    Genetic algorithms are often employed for neural network feature selection. The efficiency of the search for a good subset of features, depends on the capability of the recombination operator to construct building blocks which perform well, based on existing genetic material. In this paper, a commonality-based crossover operator is employed, in a multiobjective evolutionary setting. The operator has two main characteristics: first, it exploits the concept that common schemata are more likely to form useful building blocks; second, the offspring produced are similar to their parents in terms of the subset size they encode. The performance of the novel operator is compared against that of uniform, 1 and 2-point crossover, in feature selection with probabilistic neural networks

    Otimização multi-objetivo em aprendizado de máquina

    Get PDF
    Orientador: Fernando José Von ZubenTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Regressão logística multinomial regularizada, classificação multi-rótulo e aprendizado multi-tarefa são exemplos de problemas de aprendizado de máquina em que objetivos conflitantes, como funções de perda e penalidades que promovem regularização, devem ser simultaneamente minimizadas. Portanto, a perspectiva simplista de procurar o modelo de aprendizado com o melhor desempenho deve ser substituída pela proposição e subsequente exploração de múltiplos modelos de aprendizado eficientes, cada um caracterizado por um compromisso (trade-off) distinto entre os objetivos conflitantes. Comitês de máquinas e preferências a posteriori do tomador de decisão podem ser implementadas visando explorar adequadamente este conjunto diverso de modelos de aprendizado eficientes, em busca de melhoria de desempenho. A estrutura conceitual multi-objetivo para aprendizado de máquina é suportada por três etapas: (1) Modelagem multi-objetivo de cada problema de aprendizado, destacando explicitamente os objetivos conflitantes envolvidos; (2) Dada a formulação multi-objetivo do problema de aprendizado, por exemplo, considerando funções de perda e termos de penalização como objetivos conflitantes, soluções eficientes e bem distribuídas ao longo da fronteira de Pareto são obtidas por um solver determinístico e exato denominado NISE (do inglês Non-Inferior Set Estimation); (3) Esses modelos de aprendizado eficientes são então submetidos a um processo de seleção de modelos que opera com preferências a posteriori, ou a filtragem e agregação para a síntese de ensembles. Como o NISE é restrito a problemas de dois objetivos, uma extensão do NISE capaz de lidar com mais de dois objetivos, denominada MONISE (do inglês Many-Objective NISE), também é proposta aqui, sendo uma contribuição adicional que expande a aplicabilidade da estrutura conceitual proposta. Para atestar adequadamente o mérito da nossa abordagem multi-objetivo, foram realizadas investigações mais específicas, restritas à aprendizagem de modelos lineares regularizados: (1) Qual é o mérito relativo da seleção a posteriori de um único modelo de aprendizado, entre os produzidos pela nossa proposta, quando comparado com outras abordagens de modelo único na literatura? (2) O nível de diversidade dos modelos de aprendizado produzidos pela nossa proposta é superior àquele alcançado por abordagens alternativas dedicadas à geração de múltiplos modelos de aprendizado? (3) E quanto à qualidade de predição da filtragem e agregação dos modelos de aprendizado produzidos pela nossa proposta quando aplicados a: (i) classificação multi-classe, (ii) classificação desbalanceada, (iii) classificação multi-rótulo, (iv) aprendizado multi-tarefa, (v) aprendizado com multiplos conjuntos de atributos? A natureza determinística de NISE e MONISE, sua capacidade de lidar adequadamente com a forma da fronteira de Pareto em cada problema de aprendizado, e a garantia de sempre obter modelos de aprendizado eficientes são aqui pleiteados como responsáveis pelos resultados promissores alcançados em todas essas três frentes de investigação específicasAbstract: Regularized multinomial logistic regression, multi-label classification, and multi-task learning are examples of machine learning problems in which conflicting objectives, such as losses and regularization penalties, should be simultaneously minimized. Therefore, the narrow perspective of looking for the learning model with the best performance should be replaced by the proposition and further exploration of multiple efficient learning models, each one characterized by a distinct trade-off among the conflicting objectives. Committee machines and a posteriori preferences of the decision-maker may be implemented to properly explore this diverse set of efficient learning models toward performance improvement. The whole multi-objective framework for machine learning is supported by three stages: (1) The multi-objective modelling of each learning problem, explicitly highlighting the conflicting objectives involved; (2) Given the multi-objective formulation of the learning problem, for instance, considering loss functions and penalty terms as conflicting objective functions, efficient solutions well-distributed along the Pareto front are obtained by a deterministic and exact solver named NISE (Non-Inferior Set Estimation); (3) Those efficient learning models are then subject to a posteriori model selection, or to ensemble filtering and aggregation. Given that NISE is restricted to two objective functions, an extension for many objectives, named MONISE (Many Objective NISE), is also proposed here, being an additional contribution and expanding the applicability of the proposed framework. To properly access the merit of our multi-objective approach, more specific investigations were conducted, restricted to regularized linear learning models: (1) What is the relative merit of the a posteriori selection of a single learning model, among the ones produced by our proposal, when compared with other single-model approaches in the literature? (2) Is the diversity level of the learning models produced by our proposal higher than the diversity level achieved by alternative approaches devoted to generating multiple learning models? (3) What about the prediction quality of ensemble filtering and aggregation of the learning models produced by our proposal on: (i) multi-class classification, (ii) unbalanced classification, (iii) multi-label classification, (iv) multi-task learning, (v) multi-view learning? The deterministic nature of NISE and MONISE, their ability to properly deal with the shape of the Pareto front in each learning problem, and the guarantee of always obtaining efficient learning models are advocated here as being responsible for the promising results achieved in all those three specific investigationsDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétrica2014/13533-0FAPES

    Machine learning for network based intrusion detection: an investigation into discrepancies in findings with the KDD cup '99 data set and multi-objective evolution of neural network classifier ensembles from imbalanced data.

    Get PDF
    For the last decade it has become commonplace to evaluate machine learning techniques for network based intrusion detection on the KDD Cup '99 data set. This data set has served well to demonstrate that machine learning can be useful in intrusion detection. However, it has undergone some criticism in the literature, and it is out of date. Therefore, some researchers question the validity of the findings reported based on this data set. Furthermore, as identified in this thesis, there are also discrepancies in the findings reported in the literature. In some cases the results are contradictory. Consequently, it is difficult to analyse the current body of research to determine the value in the findings. This thesis reports on an empirical investigation to determine the underlying causes of the discrepancies. Several methodological factors, such as choice of data subset, validation method and data preprocessing, are identified and are found to affect the results significantly. These findings have also enabled a better interpretation of the current body of research. Furthermore, the criticisms in the literature are addressed and future use of the data set is discussed, which is important since researchers continue to use it due to a lack of better publicly available alternatives. Due to the nature of the intrusion detection domain, there is an extreme imbalance among the classes in the KDD Cup '99 data set, which poses a significant challenge to machine learning. In other domains, researchers have demonstrated that well known techniques such as Artificial Neural Networks (ANNs) and Decision Trees (DTs) often fail to learn the minor class(es) due to class imbalance. However, this has not been recognized as an issue in intrusion detection previously. This thesis reports on an empirical investigation that demonstrates that it is the class imbalance that causes the poor detection of some classes of intrusion reported in the literature. An alternative approach to training ANNs is proposed in this thesis, using Genetic Algorithms (GAs) to evolve the weights of the ANNs, referred to as an Evolutionary Neural Network (ENN). When employing evaluation functions that calculate the fitness proportionally to the instances of each class, thereby avoiding a bias towards the major class(es) in the data set, significantly improved true positive rates are obtained whilst maintaining a low false positive rate. These findings demonstrate that the issues of learning from imbalanced data are not due to limitations of the ANNs; rather the training algorithm. Moreover, the ENN is capable of detecting a class of intrusion that has been reported in the literature to be undetectable by ANNs. One limitation of the ENN is a lack of control of the classification trade-off the ANNs obtain. This is identified as a general issue with current approaches to creating classifiers. Striving to create a single best classifier that obtains the highest accuracy may give an unfruitful classification trade-off, which is demonstrated clearly in this thesis. Therefore, an extension of the ENN is proposed, using a Multi-Objective GA (MOGA), which treats the classification rate on each class as a separate objective. This approach produces a Pareto front of non-dominated solutions that exhibit different classification trade-offs, from which the user can select one with the desired properties. The multi-objective approach is also utilised to evolve classifier ensembles, which yields an improved Pareto front of solutions. Furthermore, the selection of classifier members for the ensembles is investigated, demonstrating how this affects the performance of the resultant ensembles. This is a key to explaining why some classifier combinations fail to give fruitful solutions

    Multiobjective Sparse Ensemble Learning by Means of Evolutionary Algorithms

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Ensemble learning can improve the performance of individual classifiers by combining their decisions. The sparseness of ensemble learning has attracted much attention in recent years. In this paper, a novel multiobjective sparse ensemble learning (MOSEL) model is proposed. Firstly, to describe the ensemble classifiers more precisely the detection error trade-off (DET) curve is taken into consideration. The sparsity ratio (sr) is treated as the third objective to be minimized, in addition to false positive rate (fpr) and false negative rate (fnr) minimization. The MOSEL turns out to be augmented DET (ADET) convex hull maximization problem. Secondly, several evolutionary multiobjective algorithms are exploited to find sparse ensemble classifiers with strong performance. The relationship between the sparsity and the performance of ensemble classifiers on the ADET space is explained. Thirdly, an adaptive MOSEL classifiers selection method is designed to select the most suitable ensemble classifiers for a given dataset. The proposed MOSEL method is applied to well-known MNIST datasets and a real-world remote sensing image change detection problem, and several datasets are used to test the performance of the method on this problem. Experimental results based on both MNIST datasets and remote sensing image change detection show that MOSEL performs significantly better than conventional ensemble learning methods

    A Diversity-Accuracy Measure for Homogenous Ensemble Selection

    Get PDF
    Several selection methods in the literature are essentially based on an evaluation function that determines whether a model M contributes positively to boost the performances of the whole ensemble. In this paper, we propose a method called DIversity and ACcuracy for Ensemble Selection (DIACES) using an evaluation function based on both diversity and accuracy. The method is applied on homogenous ensembles composed of C4.5 decision trees and based on a hill climbing strategy. This allows selecting ensembles with the best compromise between maximum diversity and minimum error rate. Comparative studies show that in most cases the proposed method generates reduced size ensembles with better performances than usual ensemble simplification methods

    Finding Appropriate Subset of Votes Per Classifier Using Multiobjective Optimization: Application to Named Entity Recognition

    Get PDF
    corecore