92 research outputs found

    Non-elitist Evolutionary Multi-objective Optimizers Revisited

    Full text link
    Since around 2000, it has been considered that elitist evolutionary multi-objective optimization algorithms (EMOAs) always outperform non-elitist EMOAs. This paper revisits the performance of non-elitist EMOAs for bi-objective continuous optimization when using an unbounded external archive. This paper examines the performance of EMOAs with two elitist and one non-elitist environmental selections. The performance of EMOAs is evaluated on the bi-objective BBOB problem suite provided by the COCO platform. In contrast to conventional wisdom, results show that non-elitist EMOAs with particular crossover methods perform significantly well on the bi-objective BBOB problems with many decision variables when using the unbounded external archive. This paper also analyzes the properties of the non-elitist selection.Comment: This is an accepted version of a paper published in the proceedings of GECCO 201

    Evolutionary multiobjective optimization for automatic agent-based model calibration: A comparative study

    Get PDF
    This work was supported by the Spanish Agencia Estatal de Investigacion, the Andalusian Government, the University of Granada, and European Regional Development Funds (ERDF) under Grants EXASOCO (PGC2018-101216-B-I00), SIMARK (P18-TP-4475), and AIMAR (A-TIC-284-UGR18). Manuel Chica was also supported by the Ramon y Cajal program (RYC-2016-19800).The authors would like to thank the ``Centro de Servicios de InformĂĄtica y Redes de Comunicaciones'' (CSIRC), University of Granada, for providing the computing resources (Alhambra supercomputer).Complex problems can be analyzed by using model simulation but its use is not straight-forward since modelers must carefully calibrate and validate their models before using them. This is specially relevant for models considering multiple outputs as its calibration requires handling different criteria jointly. This can be achieved using automated calibration and evolutionary multiobjective optimization methods which are the state of the art in multiobjective optimization as they can find a set of representative Pareto solutions under these restrictions and in a single run. However, selecting the best algorithm for performing automated calibration can be overwhelming. We propose to deal with this issue by conducting an exhaustive analysis of the performance of several evolutionary multiobjective optimization algorithms when calibrating several instances of an agent-based model for marketing with multiple outputs. We analyze the calibration results using multiobjective performance indicators and attainment surfaces, including a statistical test for studying the significance of the indicator values, and benchmarking their performance with respect to a classical mathematical method. The results of our experimentation reflect that those algorithms based on decomposition perform significantly better than the remaining methods in most instances. Besides, we also identify how different properties of the problem instances (i.e., the shape of the feasible region, the shape of the Pareto front, and the increased dimensionality) erode the behavior of the algorithms to different degrees.Spanish Agencia Estatal de InvestigacionAndalusian GovernmentUniversity of GranadaEuropean Commission PGC2018-101216-B-I00 P18-TP-4475 A-TIC-284-UGR18Spanish Government RYC-2016-1980

    Recognizing Sets in Evolutionary Multiobjective Optimization, Journal of Telecommunications and Information Technology, 2012, nr 1

    Get PDF
    Among Evolutionary Multiobjective Optimization Algorithms (EMOA) there are many which find only Paretooptimal solutions. These may not be enough in case of multimodal problems and non-connected Pareto fronts, where more information about the shape of the landscape is required. We propose a Multiobjective Clustered Evolutionary Strategy (MCES) which combines a hierarchic genetic algorithm consisting of multiple populations with EMOA rank selection. In the next stage, the genetic sample is clustered to recognize regions with high density of individuals. These regions are occupied by solutions from the neighborhood of the Pareto set. We discuss genetic algorithms with heuristic and the concept of well-tuning which allows for theoretical verification of the presented strategy. Numerical results begin with one example of clustering in a single-objective benchmark problem. Afterwards, we give an illustration of the EMOA rank selection in a simple two-criteria minimization problem and provide results of the simulation of MCES for multimodal, multi-connected example. The strategy copes with multimodal problems without losing local solutions and gives better insight into the shape of the evolutionary landscape. What is more, the stability of solutions in MCES may be analyzed analytically

    Pareto or non-Pareto: Bi-criterion evolution in multi-objective optimization

    Get PDF
    It is known that Pareto dominance has its own weaknesses as the selection criterion in evolutionary multi-objective optimization. Algorithms based on Pareto dominance can suffer from slow convergence to the optimal front, inferior performance on problems with many objectives, etc. Non-Pareto criterion, such as decomposition-based criterion and indicator-based criterion, has already shown promising results in this regard, but its high selection pressure may lead the algorithm to prefer some specific areas of the problem’s Pareto front, especially when the front is highly irregular. In this paper, we propose a bi-criterion evolution framework of Pareto criterion and non-Pareto criterion, which attempts to make use of their strengths and compensates for each other’s weaknesses. The proposed framework consists of two parts, Pareto criterion evolution and non-Pareto criterion evolution. The two parts work collaboratively, with an abundant exchange of information to facilitate each other’s evolution. Specifically, the non-Pareto criterion evolution leads the Pareto criterion evolution forward and the Pareto criterion evolution compensates the possible diversity loss of the non-Pareto criterion evolution. The proposed framework keeps the freedom on the implementation of the non-Pareto criterion evolution part, thus making it applicable for any non-Pareto-based algorithm. In the Pareto criterion evolution, two operations, population maintenance and individual exploration, are presented. The former is to maintain a set of representative nondominated individuals, and the latter is to explore some promising areas which are undeveloped (or not well-developed) in the non-Pareto criterion evolution. Experimental results have shown the effectiveness of the proposed framework. The bi-criterion evolution works well on seven groups of 42 test problems with various characteristics, including those where Pareto-based algorithms or non-Paretobased algorithms strugg- e

    Otimização multiobjetivo com estimação de distribuição guiada por tomada de decisão multicritério

    Get PDF
    Orientadores: Fernando JosĂ© Von Zuben, Guilherme Palermo CoelhoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia ElĂ©trica e de ComputaçãoResumo: Considerando as meta-heurĂ­sticas estado-da-arte para otimização multiobjetivo (MOO, do inglĂȘs Multi-Objective Optimization), como NSGA-II, NSGA-III, SPEA2 e SMS-EMOA, apenas um critĂ©rio de preferĂȘncia por vez Ă© levado em conta para classificar soluçÔes ao longo do processo de busca. Neste trabalho, alguns dos critĂ©rios de seleção adotados por esses algoritmos estado-da-arte, incluindo classe de nĂŁo-dominĂąncia e contribuição para a mĂ©trica de hipervolume, sĂŁo utilizados em conjunto por uma tĂ©cnica de tomada de decisĂŁo multicritĂ©rio (MCDM, do inglĂȘs Multi-Criteria Decision Making), mais especificamente o algoritmo TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), responsĂĄvel por ordenar todas as soluçÔes candidatas. O algoritmo TOPSIS permite o uso de abordagens baseadas em mĂșltiplas preferĂȘncias, ao invĂ©s de apenas uma como na maioria das tĂ©cnicas hĂ­bridas de MOO e MCDM. Cada preferĂȘncia Ă© tratada como um critĂ©rio com uma importĂąncia relativa determinada pelo tomador de decisĂŁo. Novas soluçÔes candidatas sĂŁo entĂŁo amostradas por meio de um modelo de distribuição, neste caso uma mistura de Gaussianas, obtido a partir da lista ordenada de soluçÔes candidatas produzida pelo TOPSIS. Essencialmente, um operador de roleta Ă© utilizado para selecionar um par de soluçÔes candidatas de acordo com o seu mĂ©rito relativo, adequadamente determinado pelo TOPSIS, e entĂŁo uma novo par de soluçÔes candidatas Ă© gerado a partir de perturbaçÔes Gaussianas centradas nas correspondentes soluçÔes candidatas escolhidas. O desvio padrĂŁo das funçÔes Gaussianas Ă© definido em função da distĂąncia das soluçÔes no espaço de decisĂŁo. TambĂ©m foram utilizados operadores para auxiliar a busca a atingir regiĂ”es potencialmente promissoras do espaço de busca que ainda nĂŁo foram mapeadas pelo modelo de distribuição. Embora houvesse outras opçÔes, optou-se por seguir a estrutura do algoritmo NSGA-II, tambĂ©m adotada no algoritmo NSGA-III, como base para o mĂ©todo aqui proposto, denominado MOMCEDA (Multi-Objective Multi-Criteria Estimation of Distribution Algorithm). Assim, os aspectos distintos da proposta, quando comparada com o NSGA-II e o NSGA-III, sĂŁo a forma como a população de soluçÔes candidatas Ă© ordenada e a estratĂ©gia adotada para gerar novos indivĂ­duos. Os resultados nos problemas de teste ZDT mostram claramente que nosso mĂ©todo Ă© superior aos algoritmos NSGA- II e NSGA-III, e Ă© competitivo com outras meta-heurĂ­sticas bem estabelecidas na literatura de otimização multiobjetivo, levando em conta as mĂ©tricas de convergĂȘncia, hipervolume e a medida IGDAbstract: Considering the state-of-the-art meta-heuristics for multi-objective optimization (MOO), such as NSGA-II, NSGA-III, SPEA2 and SMS-EMOA, only one preference criterion at a time is considered to properly rank candidate solutions along the search process. Here, some of the preference criteria adopted by those state-of-the-art algorithms, including non-dominance level and contribution to the hypervolume, are taken together as inputs to a multi-criteria decision making (MCDM) strategy, more specifically the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), responsible for sorting all candidate solutions. The TOPSIS algorithm allows the use of multiple preference based approaches, rather than focusing on a particular one like in most hybrid algorithms composed of MOO and MCDM techniques. Here, each preference is treated as a criterion with a relative relevance to the decision maker (DM). New candidate solutions are then generated using a distribution model, in our case a Gaussian mixture model, derived from the sorted list of candidate solutions produced by TOPSIS. Essentially, a roulette wheel is used to choose a pair of the current candidate solutions according to the relative quality, suitably determined by TOPSIS, and after that a new pair of candidate solutions is generated as Gaussian perturbations centered at the corresponding parent solutions. The standard deviation of the Gaussian functions is defined in terms of the parents distance in the decision space. We also adopt refreshing operators, aiming at reaching potentially promising regions of the search space not yet mapped by the distribution model. Though other choices could have been made, we decided to follow the structural conception of the NSGA-II algorithm, also adopted in the NSGA-III algorithm, as basis for our proposal, denoted by MOMCEDA (Multi-Objective Multi-Criteria Estimation of Distribution Algorithm). Therefore, the distinctive aspects, when compared to NSGA-II and NSGA-III, are the way the current population of candidate solutions is ranked and the strategy adopted to generate new individuals. The results on ZDT benchmarks show that our method is clearly superior to NSGA-II and NSGA-III, and is competitive with other wellestablished meta-heuristics for multi-objective optimization from the literature, considering convergence to the Pareto front, hypervolume and IGD as performance metricsMestradoEngenharia de ComputaçãoMestre em Engenharia ElĂ©trica2016/21031-0FAPESPCAPE

    Scalarized Preferences in Multi-objective Optimization

    Get PDF
    Multikriterielle Optimierungsprobleme verfĂŒgen ĂŒber keine Lösung, die optimal in jeder Zielfunktion ist. Die Schwierigkeit solcher Probleme liegt darin eine Kompromisslösung zu finden, die den PrĂ€ferenzen des Entscheiders genĂŒgen, der den Kompromiss implementiert. Skalarisierung – die Abbildung des Vektors der Zielfunktionswerte auf eine reelle Zahl – identifiziert eine einzige Lösung als globales PrĂ€ferenzenoptimum um diese Probleme zu lösen. Allerdings generieren Skalarisierungsmethoden keine zusĂ€tzlichen Informationen ĂŒber andere Kompromisslösungen, die die PrĂ€ferenzen des Entscheiders bezĂŒglich des globalen Optimums verĂ€ndern könnten. Um dieses Problem anzugehen stellt diese Dissertation eine theoretische und algorithmische Analyse skalarisierter PrĂ€ferenzen bereit. Die theoretische Analyse besteht aus der Entwicklung eines Ordnungsrahmens, der PrĂ€ferenzen als Problemtransformationen charakterisiert, die prĂ€ferierte Untermengen der Paretofront definieren. Skalarisierung wird als Transformation der Zielmenge in diesem Ordnungsrahmen dargestellt. Des Weiteren werden Axiome vorgeschlagen, die wĂŒnschenswerte Eigenschaften von Skalarisierungsfunktionen darstellen. Es wird gezeigt unter welchen Bedingungen existierende Skalarisierungsfunktionen diese Axiome erfĂŒllen. Die algorithmische Analyse kennzeichnet PrĂ€ferenzen anhand des Resultats, das ein Optimierungsalgorithmus generiert. Zwei neue Paradigmen werden innerhalb dieser Analyse identifiziert. FĂŒr beide Paradigmen werden Algorithmen entworfen, die skalarisierte PrĂ€ferenzeninformationen verwenden: PrĂ€ferenzen-verzerrte Paretofrontapproximationen verteilen Punkte ĂŒber die gesamte Paretofront, fokussieren aber mehr Punkte in Regionen mit besseren Skalarisierungswerten; multimodale PrĂ€ferenzenoptima sind Punkte, die lokale Skalarisierungsoptima im Zielraum darstellen. Ein Drei-Stufen-Algorith\-mus wird entwickelt, der lokale Skalarisierungsoptima approximiert und verschiedene Methoden werden fĂŒr die unterschiedlichen Stufen evaluiert. Zwei Realweltprobleme werden vorgestellt, die die NĂŒtzlichkeit der beiden Algorithmen illustrieren. Das erste Problem besteht darin FahrplĂ€ne fĂŒr ein Blockheizkraftwerk zu finden, die die erzeugte ElektrizitĂ€t und WĂ€rme maximieren und den Kraftstoffverbrauch minimiert. PrĂ€ferenzen-verzerrte Approximationen generieren mehr Energie-effiziente Lösungen, unter denen der Entscheider seine favorisierte Lösung auswĂ€hlen kann, indem er die Konflikte zwischen den drei Zielen abwĂ€gt. Das zweite Problem beschĂ€ftigt sich mit der Erstellung von FahrplĂ€nen fĂŒr GerĂ€te in einem WohngebĂ€ude, so dass Energiekosten, Kohlenstoffdioxidemissionen und thermisches Unbehagen minimiert werden. Es wird gezeigt, dass lokale Skalarisierungsoptima FahrplĂ€ne darstellen, die eine gute Balance zwischen den drei Zielen bieten. Die Analyse und die Experimente, die in dieser Arbeit vorgestellt werden, ermöglichen es Entscheidern bessere Entscheidungen zu treffen indem Methoden angewendet werden, die mehr Optionen generieren, die mit den PrĂ€ferenzen der Entscheider ĂŒbereinstimmen
    • 

    corecore