44 research outputs found

    An analysis of connectivity

    Get PDF
    Recent evidence in biology indicates crossmodal, which is to say information sharing between the different senses, influences in the brain. This helps to explain such phenomenon as the McGurk effect, where even though a person knows that he is seeing the lip movement “GA” and is hearing the sound “BA”, the person usually can’t help but think that they are hearing the sound “DA”. The McGurk effect is an example of where the visual sense influences the perception of the audio sense. These discoveries transition old feedforward models of the brain to ones that rely on feedback connections and, more recently, crossmodal connections. Although we have many software systems that rely on some form of intelligence, i.e. person recognition software, speech to text software, etc, very few take advantage of crossmodal influences. This thesis provides an analysis of the importance of connections between explicit modalities in a recurrent neural network model. Each modality is represented as an individual recurrent neural network. The connections between the modalities and the modalities themselves are trained by applying a genetic algorithm to generate a population of the full model to solve certain types of classification problems. The main contribution of this work is to experimentally show the relative importance of feedback and crossmodal connections. From this it can be argued that the utilization of crossmodal information at an earlier stage of decision making can boost the accuracy and reliability of intelligent systems

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    What's a face worth: Noneconomic factors in game playing

    Get PDF
    Where behavior defies economic analysis, one explanation is that individuals consider more than the immediate payoff. We present evidence that noneconomic factors influence behavior. Attractiveness influences offers in the Ultimatum and Dictator Games. Facial resemblance, a cue of relatedness, increases trusting in a two-node trust game. Only by considering the range of possible influences will game-playing behavior be explained

    Rules of engagement : competitive coevolutionary dynamics in computational systems

    Get PDF
    Given that evolutionary biologists have considered coevolutionary interactions since the dawn of Darwinism, it is perhaps surprising that coevolution was largely overlooked during the formative years of evolutionary computing. It was not until the early 1990s that Hillis' seminal work thrust coevolution into the spotlight. Upon attempting to evolve fixed-length sorting networks, a problem with a long and competitive history, Hillis found that his standard evolutionary algorithm was producing sub-standard networks. In response, he decided to reciprocally evolve a population of testlists against the sorting network population; thus producing a coevolutionary system. The result was impressive; coevolution not only outperformed evolution, but the best network it discovered was only one comparison longer than the best-known solution. For the first time, a coevolutionary algorithm had been successfully applied to problem-solving. Pre-Hillis, the shortcomings of standard evolutionary algorithms had been understood for some time: whilst defining an adequate fitness function can be as challenging as the problem one is hoping to solve, once achieved, the accumulation of fitness-improving mutations can push a population towards local optima that are difficult to escape. Coevolution offers a solution. By allowing the fitness of each evolving individual to vary (through competition) with other reciprocally evolving individuals, coevolution removes the requirement of a fitness yardstick. In conjunction, the reciprocal adaptations of each individual begin to erode local optima as soon as they appear. However, coevolution is no panacea. As a problem-solving tool, coevolutionary algorithms suffer from some debilitating dynamics, each a result of the relative fitness assessment of individuals. In a single-, or multi-, population competitive system, coevolution may stabilize at a suboptimal equilibrium, or mediocre stable state; analogous to the traditional problem of local optima. Populations may become highly specialized in an unanticipated (and undesirable) manner; potentially resulting in brittle solutions that are fragile to perturbation. The system may cycle; producing dynamics similar to the children's game rock-paper-scissors. Disengagement may occur, whereby one population out-performs another to the extent that individuals cannot be discriminated on the basis of fitness alone; thus removing selection pressure and allowing populations to drift. Finally, coevolution's relative fitness assessment renders traditional visualization techniques (such as the graph of fitness over time) obsolete; thus exacerbating each of the above problems. This thesis attempts to better understand and address the problems of coevolution through the design and analysis of simple coevolutionary models. 'Reduced virulence' - a novel technique specifically designed to tackle disengagement - is developed. Empirical results demonstrate the ability of reduced virulence to combat disengagement both in simple and complex domains, whilst outperforming the only known competitors. Combining reduced virulence with diversity maintenance techniques is also shown to counteract mediocre stability and over-specialization. A critique of the CIAO plot - a visualization technique developed to detect coevolutionary cycling - highlights previously undocumented ambiguities; experimental evidence demonstrates the need for complementary visualizations. Extending the scope of visualization, a first exploration into coevolutionary steering is performed; a technique allowing the user to interact with a coevolutionary system during run-time. Using a simple model incorporating reduced virulence, the coevolutionary steering demonstration highlights the future potential of such tools for both research and education. The role of neutrality in coevolution is discussed in detail. Whilst much emphasis is placed upon neutral networks in the evolutionary computation literature, the nature of coevolutionary neutrality is generally overlooked. Preliminary ideas for modelling coevolutionary neutrality are presented. Finally, whilst this thesis is primarily aimed at a computing audience, strong reference to evolutionary biology is made throughout. Exemplifying potential crossover, the CIAO plot, a tool previously unused in biology, is applied to a simulation of E. Coli, with results con rming empirical observations of real bacteria.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Acta Cybernetica : Volume 18. Number 2.

    Get PDF

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Cooperation, psychological game theory, and limitations of rationality in social interaction

    Full text link
    corecore