287 research outputs found

    WiFi-based PCL for monitoring private airfields

    Get PDF
    In this article, the potential exploitation of WiFi-based PCL systems is investigated with reference to a real-world civil application in which these sensors are expected to nicely complement the existing technologies adopted for monitoring purposes, especially when operating against noncooperative targets. In particular, we consider the monitoring application of small private airstrips or airfields. With this terminology, we refer to open areas designated for the takeoff and landing of small aircrafts that, unlike an airport, have generally short and possibly unpaved runways (e.g., grass, dirt, sand, or gravel surfaces) and do not necessarily have terminals. More important, such areas usually are devoid of conventional technologies, equipment, or procedures adopted to guarantee safety and security in large aerodromes.There exist a huge number of small, privately owned, and unlicensed airfields around the world. Private aircraft owners mainly use these “airports” for recreational, single-person, or private flights for small groups and training flight purposes. In addition, residential airparks have proliferated in recent years, especially inthe United States, Canada, and South Africa. A residential airpark, or “fly-in community,” features common airstrips where homes with attached hangars allow owners to taxi from their hangar to a shared runway. In many cases, roads are dual use for both cars and planes.In such scenarios, the possibility to employ low-cost, compact, nonintrusive, and nontransmitting sensors as a way to improve safety and security with limited impact on the airstrips' users would be of great potential interest. To this purpose, WiFi-based passive radar sensors appear to be good candidates [23]. Therefore, we investigate their application against typical operative conditions experienced in the scenarios described earlier. The aim is to assess the capability to detect, localize, and track authorized and unauthorized targets that can be occupying the runway and the surrounding areas

    Short-range passive radar for small private airports surveillance

    Get PDF
    This paper investigates the effectiveness of a passive radar for enhancing the security level in small airports and private runways. Specifically WiFi transmissions are parasitically exploited to perform detection and localization of non-cooperative targets that can be occupying the runway and the surrounding areas. Targets of interest include light/ultralight aircrafts, vehicles, people and even animals that may intrude onto the runways either intentionally or accidentally. The experimental results obtained by means of an experimental setup developed at SAPIENZA University of Rome prove the successful applicability of the proposed approach for small airports surveillance. © 2016 EuMA

    Disturbance removal in passive radar via sliding extensive cancellation algorithm (ECA-S)

    Get PDF
    In this paper an advanced version of the Extensive Cancellation Algorithm (ECA) is proposed for robust disturbance cancellation and target detection in passive radar. Firstly some specific limitations of previous ECA versions are identified when dealing with a highly time-varying disturbance scenario in the presence of slowly moving targets. Specifically, the need to rapidly adapt the filter coefficients is shown to yield undesired effects on low Doppler target echoes, along with the expected partial cancellation. Therefore a sliding version of the ECA is presented which operates on partially overlapped signals batches. The proposed modification to the original ECA is shown to appropriately counteract the limitations above by taking advantage of a smooth estimate of the filter coefficients. The benefits of the proposed approach are demonstrated against experimental data sets accounting for quite different passive radar applications

    Improved detection for passive radar by illumination matching on reference channel

    Get PDF
    A novel technique for enhancing the detection of targets of interest is presented for application on the context of passive radar. The methodology is inspired on the well known Matched Illumination technique used in active systems and applies to scenarios where the targets can be modeled as having a few predominant scatterers. Since passive systems have no control over the signals which are transmitted by the illuminators of opportunity, the paper proposes to match the signal received on the reference channel. Results show that the correlation function will be enhanced for the targets of interest, relatively to the remaining targets and the clutter on the target region.info:eu-repo/semantics/publishedVersio

    First experimental results for a WiFi-based passive forward scatter radar

    Get PDF
    In this paper we investigate the potentiality to exploit a passive forward scatter radar (PFSR) based on WiFi transmissions for vehicle classification. In particular, a procedure to extract the vehicle signatures from the received signal is presented. The preliminary results obtained by means of an experimental setup developed and fielded at University of Rome "La Sapienza" show that different targets yield quite different signature shapes that can be fruitfully exploited by a classification stage according to a reasonable strategy

    Reducing the Computational Complexity of WiFi-Based Passive Radar Processing

    Get PDF
    WiFi-based passive radar is considered in this paper as an effective technology for short range monitoring applications. Aiming at limiting its complexity and enhancing its suitability for civilian applications, appropriate modifications are proposed to the signal processing scheme originally designed for such sensor. Specifically, we show that a simple inversion in the order of the main processing stages, namely clutter cancellation and range compression, allows to both reduce the number of floating-point operations and relax the requirements on the data management. Moreover, the use of a reciprocal filter in lieu of a matched filter to implement the range compression stage is proved to yield a further simplification in the resulting processing scheme along with additional benefits in terms of achievable performance in the considered application. The alternative processing schemes are compared in terms of computational burden and the effectiveness of the proposed cost-effective solutions is proved against experimental datasets

    On the Use of Reciprocal Filter against WiFi Packets for Passive Radar

    Get PDF
    This paper aims at a critical review of the signal processing scheme used in WiFi-based passive radar in order to limit its complexity and enhance its suitability for short range civilian applications. To this purpose the exploitation of a reciprocal filtering strategy is investigated as an alternative to conventional matched filtering at the range compression stage. Along with the well-known advantage of a remarkable sidelobes control capability for the resulting range-Doppler response, the use of a reciprocal filter is shown to provide additional benefits for the specific sensor subject of this study. Specifically, it allows to streamline the disturbance cancellation stage and to implement a unified signal processing architecture which is capable to handle the different modulation schemes typically adopted in WiFi transmissions. Appropriate adjustments are also proposed to the theoretical reciprocal filter in order to cope with the inherent loss in term of signal-to-noise power ratio. The effectiveness of the revised signal processing scheme encompassing the reciprocal filtering strategy is proved against both simulated and experimental datasets

    Ship targets feature extraction with GNSS-based passive radar via ISAR approaches. Preliminary experimental study

    Get PDF
    This paper focuses on a passive radar system based on Global Navigation Satellite Systems for maritime surveillance. While in the past the capability of this technology to detect ship targets at sea was proved, despite the low EIRP level of the GNSS, the objective of this paper is investigating the potential of the system to extract information concerning the detected target characteristics. An experimental study is here provided, showing that the Doppler gradient observed for ship targets of interest can be exploited making use of ISAR approaches for extracting ship features to be exploited in target recognition procedures

    DVB-S based passive polarimetric ISAR – methods and experimental validation

    Get PDF
    In this work, we focus on passive polarimetric ISAR for ship target imaging using DVB-S signals of opportunity. A first goal of the research is to investigate if, within the challenging passive environment, different scattering mechanisms, belonging to distinct parts of the imaged target, can be separated in the polarimetric domain. Furthermore, a second goal is at verifying if polarimetric diversity could enable the formation of ISAR products with enhanced quality with respect to the single channel case, particularly in terms of better reconstruction of the target shape. To this purpose, a dedicated trial has been conducted along the river Rhine in Germany by means of an experimental DVB-S based system developed at Fraunhofer FHR and considering a ferry as cooperative target. To avoid inaccuracies due to data-driven motion compensation procedures and to fairly interpret the polarimetric results, we processed the data by means of a known-motion back-projection algorithm obtaining ISAR images at each polarimetric channel. Then, different approaches in the polarimetric domain have been introduced. The first one is based on the well-known Pauli Decomposition. The others can be divided in two main groups: (i) techniques aimed at separating the different backscattering mechanisms, and (ii) image domain techniques to fuse the polarimetric information in a single ISAR image with enhanced quality. The different considered techniques have been applied to several data sets with distinct bistatic geometries. The obtained results clearly demonstrate the potentialities of polarimetric diversity that could be fruitfully exploited for classification purposes

    Reference-free amplitude-based WiFi passive sensing

    Get PDF
    The parasitic exploitation of WiFi signals for passive sensing purposes is a topic that is attracting considerable interest in the scientific community. In an attempt at meeting the requirements for sensor compactness, easy deployment, and low cost, we resort to a non-coherent signal processing scheme that does not rely on the availability of a reference signal and relaxes the constraints on the sensor hardware implementation. Specifically, with the proposed strategy, the presence of a moving target echo is determined by detecting the amplitude modulation that it produces on the direct signal transmitted from the WiFi access point. We investigate the target discrimination capability of the resulting sensor against the competing interference background and we theoretically characterize the impact of undesired amplitude fluctuations in the received signal that are determined by causes other than the superposition of the target echo, thereby including the waveform properties. Hence, we propose different solutions to address the limitations identified, characterized by different complexities, and we investigate their advantages and drawbacks. The conceived signal processing schemes are thoroughly validated on both simulated and experimental data, collected in different operational scenarios
    • …
    corecore