12,815 research outputs found

    ParaMetric: An Automatic Evaluation Metric for Paraphrasing

    Get PDF
    We present ParaMetric, an automatic evaluation metric for data-driven approaches to paraphrasing. ParaMetric provides an objective measure of quality using a collection of multiple translations whose paraphrases have been manually annotated. ParaMetric calculates precision and recall scores by comparing the paraphrases discovered by automatic paraphrasing techniques against gold standard alignments of words and phrases within equivalent sentences. We report scores for several established paraphrasing techniques.

    Better Summarization Evaluation with Word Embeddings for ROUGE

    Full text link
    ROUGE is a widely adopted, automatic evaluation measure for text summarization. While it has been shown to correlate well with human judgements, it is biased towards surface lexical similarities. This makes it unsuitable for the evaluation of abstractive summarization, or summaries with substantial paraphrasing. We study the effectiveness of word embeddings to overcome this disadvantage of ROUGE. Specifically, instead of measuring lexical overlaps, word embeddings are used to compute the semantic similarity of the words used in summaries instead. Our experimental results show that our proposal is able to achieve better correlations with human judgements when measured with the Spearman and Kendall rank coefficients.Comment: Pre-print - To appear in proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP

    Unsupervised Paraphrasing via Deep Reinforcement Learning

    Full text link
    Paraphrasing is expressing the meaning of an input sentence in different wording while maintaining fluency (i.e., grammatical and syntactical correctness). Most existing work on paraphrasing use supervised models that are limited to specific domains (e.g., image captions). Such models can neither be straightforwardly transferred to other domains nor generalize well, and creating labeled training data for new domains is expensive and laborious. The need for paraphrasing across different domains and the scarcity of labeled training data in many such domains call for exploring unsupervised paraphrase generation methods. We propose Progressive Unsupervised Paraphrasing (PUP): a novel unsupervised paraphrase generation method based on deep reinforcement learning (DRL). PUP uses a variational autoencoder (trained using a non-parallel corpus) to generate a seed paraphrase that warm-starts the DRL model. Then, PUP progressively tunes the seed paraphrase guided by our novel reward function which combines semantic adequacy, language fluency, and expression diversity measures to quantify the quality of the generated paraphrases in each iteration without needing parallel sentences. Our extensive experimental evaluation shows that PUP outperforms unsupervised state-of-the-art paraphrasing techniques in terms of both automatic metrics and user studies on four real datasets. We also show that PUP outperforms domain-adapted supervised algorithms on several datasets. Our evaluation also shows that PUP achieves a great trade-off between semantic similarity and diversity of expression

    Visual Information Guided Zero-Shot Paraphrase Generation

    Full text link
    Zero-shot paraphrase generation has drawn much attention as the large-scale high-quality paraphrase corpus is limited. Back-translation, also known as the pivot-based method, is typical to this end. Several works leverage different information as "pivot" such as language, semantic representation and so on. In this paper, we explore using visual information such as image as the "pivot" of back-translation. Different with the pipeline back-translation method, we propose visual information guided zero-shot paraphrase generation (ViPG) based only on paired image-caption data. It jointly trains an image captioning model and a paraphrasing model and leverage the image captioning model to guide the training of the paraphrasing model. Both automatic evaluation and human evaluation show our model can generate paraphrase with good relevancy, fluency and diversity, and image is a promising kind of pivot for zero-shot paraphrase generation.Comment: Accepted By COLING 202

    A Survey of Paraphrasing and Textual Entailment Methods

    Full text link
    Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.Comment: Technical Report, Natural Language Processing Group, Department of Informatics, Athens University of Economics and Business, Greece, 201

    Sentence Similarity and Machine Translation

    Get PDF
    Neural machine translation (NMT) systems encode an input sentence into an intermediate representation and then decode that representation into the output sentence. Translation requires deep understanding of language; as a result, NMT models trained on large amounts of data develop a semantically rich intermediate representation. We leverage this rich intermediate representation of NMT systems—in particular, multilingual NMT systems, which learn to map many languages into and out of a joint space—for bitext curation, paraphrasing, and automatic machine translation (MT) evaluation. At a high level, all of these tasks are rooted in similarity: sentence and document alignment requires measuring similarity of sentences and documents, respectively; paraphrasing requires producing output which is similar to an input; and automatic MT evaluation requires measuring the similarity between MT system outputs and corresponding human reference translations. We use multilingual NMT for similarity in two ways: First, we use a multilingual NMT model with a fixed-size intermediate representation (Artetxe and Schwenk, 2018) to produce multilingual sentence embeddings, which we use in both sentence and document alignment. Second, we train a multilingual NMT model and show that it generalizes to the task of generative paraphrasing (i.e., “translating” from Russian to Russian), when used in conjunction with a simple generation algorithm to discourage copying from the input to the output. We also use this model for automatic MT evaluation, to force decode and score MT system outputs conditioned on their respective human reference translations. Since we leverage multilingual NMT models, each method works in many languages using a single model. We show that simple methods, which leverage the intermediate representation of multilingual NMT models trained on large amounts of bitext, outperform prior work in paraphrasing, sentence alignment, document alignment, and automatic MT evaluation. This finding is consistent with recent trends in the natural language processing community, where large language models trained on huge amounts of unlabeled text have achieved state-of-the-art results on tasks such as question answering, named entity recognition, and parsing

    Paraphrase Generation with Deep Reinforcement Learning

    Full text link
    Automatic generation of paraphrases from a given sentence is an important yet challenging task in natural language processing (NLP), and plays a key role in a number of applications such as question answering, search, and dialogue. In this paper, we present a deep reinforcement learning approach to paraphrase generation. Specifically, we propose a new framework for the task, which consists of a \textit{generator} and an \textit{evaluator}, both of which are learned from data. The generator, built as a sequence-to-sequence learning model, can produce paraphrases given a sentence. The evaluator, constructed as a deep matching model, can judge whether two sentences are paraphrases of each other. The generator is first trained by deep learning and then further fine-tuned by reinforcement learning in which the reward is given by the evaluator. For the learning of the evaluator, we propose two methods based on supervised learning and inverse reinforcement learning respectively, depending on the type of available training data. Empirical study shows that the learned evaluator can guide the generator to produce more accurate paraphrases. Experimental results demonstrate the proposed models (the generators) outperform the state-of-the-art methods in paraphrase generation in both automatic evaluation and human evaluation.Comment: EMNLP 201
    • 

    corecore