3,190 research outputs found

    Multilingual Unsupervised Sentence Simplification

    Full text link
    Progress in Sentence Simplification has been hindered by the lack of supervised data, particularly in languages other than English. Previous work has aligned sentences from original and simplified corpora such as English Wikipedia and Simple English Wikipedia, but this limits corpus size, domain, and language. In this work, we propose using unsupervised mining techniques to automatically create training corpora for simplification in multiple languages from raw Common Crawl web data. When coupled with a controllable generation mechanism that can flexibly adjust attributes such as length and lexical complexity, these mined paraphrase corpora can be used to train simplification systems in any language. We further incorporate multilingual unsupervised pretraining methods to create even stronger models and show that by training on mined data rather than supervised corpora, we outperform the previous best results. We evaluate our approach on English, French, and Spanish simplification benchmarks and reach state-of-the-art performance with a totally unsupervised approach. We will release our models and code to mine the data in any language included in Common Crawl

    Comparison and Adaptation of Automatic Evaluation Metrics for Quality Assessment of Re-Speaking

    Get PDF
    Re-speaking is a mechanism for obtaining high quality subtitles for use in live broadcast and other public events. Because it relies on humans performing the actual re-speaking, the task of estimating the quality of the results is non-trivial. Most organisations rely on humans to perform the actual quality assessment, but purely automatic methods have been developed for other similar problems, like Machine Translation. This paper will try to compare several of these methods: BLEU, EBLEU, NIST, METEOR, METEOR-PL, TER and RIBES. These will then be matched to the human-derived NER metric, commonly used in re-speaking.Comment: Comparison and Adaptation of Automatic Evaluation Metrics for Quality Assessment of Re-Speaking. arXiv admin note: text overlap with arXiv:1509.0908

    Exploiting Lexical Conceptual Structure for paraphrase generation

    Get PDF
    Abstract. Lexical Conceptual Structure (LCS) represents verbs as semantic structures with a limited number of semantic predicates. This paper attempts to exploit how LCS can be used to explain the regularities underlying lexical and syntactic paraphrases, such as verb alternation, compound word decomposition, and lexical derivation. We propose a paraphrase generation model which transforms LCSs of verbs, and then conduct an empirical experiment taking the paraphrasing of Japanese light-verb constructions as an example. Experimental results justify that syntactic and semantic properties of verbs encoded in LCS are useful to semantically constrain the syntactic transformation in paraphrase generation.

    Three English Learner Assistance Systems Using Automatic Paraphrasing Techniques

    Get PDF
    We developed three systems based on automatic paraphrasing techniques to help English learners and English-language beginners. One system extracts personal error patterns in the user’s English usage. The second transforms English sentences containing the letters “l” and “r” into sentences containing fewer instances of these letters, which Japanese people have trouble pronouncing properly in English. This system could be used, for example, to transform a draft of a presentation that a Japanese speaker was to present to an audience. The third is an annotation system that provides definition sentences of difficult English words, making them easier to understand. We believe that these systems will be useful both for learners of English and in studies on second-language acquisition

    The Circle of Meaning: From Translation to Paraphrasing and Back

    Get PDF
    The preservation of meaning between inputs and outputs is perhaps the most ambitious and, often, the most elusive goal of systems that attempt to process natural language. Nowhere is this goal of more obvious importance than for the tasks of machine translation and paraphrase generation. Preserving meaning between the input and the output is paramount for both, the monolingual vs bilingual distinction notwithstanding. In this thesis, I present a novel, symbiotic relationship between these two tasks that I term the "circle of meaning''. Today's statistical machine translation (SMT) systems require high quality human translations for parameter tuning, in addition to large bi-texts for learning the translation units. This parameter tuning usually involves generating translations at different points in the parameter space and obtaining feedback against human-authored reference translations as to how good the translations. This feedback then dictates what point in the parameter space should be explored next. To measure this feedback, it is generally considered wise to have multiple (usually 4) reference translations to avoid unfair penalization of translation hypotheses which could easily happen given the large number of ways in which a sentence can be translated from one language to another. However, this reliance on multiple reference translations creates a problem since they are labor intensive and expensive to obtain. Therefore, most current MT datasets only contain a single reference. This leads to the problem of reference sparsity---the primary open problem that I address in this dissertation---one that has a serious effect on the SMT parameter tuning process. Bannard and Callison-Burch (2005) were the first to provide a practical connection between phrase-based statistical machine translation and paraphrase generation. However, their technique is restricted to generating phrasal paraphrases. I build upon their approach and augment a phrasal paraphrase extractor into a sentential paraphraser with extremely broad coverage. The novelty in this augmentation lies in the further strengthening of the connection between statistical machine translation and paraphrase generation; whereas Bannard and Callison-Burch only relied on SMT machinery to extract phrasal paraphrase rules and stopped there, I take it a few steps further and build a full English-to-English SMT system. This system can, as expected, ``translate'' any English input sentence into a new English sentence with the same degree of meaning preservation that exists in a bilingual SMT system. In fact, being a state-of-the-art SMT system, it is able to generate n-best "translations" for any given input sentence. This sentential paraphraser, built almost entirely from existing SMT machinery, represents the first 180 degrees of the circle of meaning. To complete the circle, I describe a novel connection in the other direction. I claim that the sentential paraphraser, once built in this fashion, can provide a solution to the reference sparsity problem and, hence, be used to improve the performance a bilingual SMT system. I discuss two different instantiations of the sentential paraphraser and show several results that provide empirical validation for this connection

    Detecting Machine-Translated Text using Back Translation

    Full text link
    Machine-translated text plays a crucial role in the communication of people using different languages. However, adversaries can use such text for malicious purposes such as plagiarism and fake review. The existing methods detected a machine-translated text only using the text's intrinsic content, but they are unsuitable for classifying the machine-translated and human-written texts with the same meanings. We have proposed a method to extract features used to distinguish machine/human text based on the similarity between the intrinsic text and its back-translation. The evaluation of detecting translated sentences with French shows that our method achieves 75.0% of both accuracy and F-score. It outperforms the existing methods whose the best accuracy is 62.8% and the F-score is 62.7%. The proposed method even detects more efficiently the back-translated text with 83.4% of accuracy, which is higher than 66.7% of the best previous accuracy. We also achieve similar results not only with F-score but also with similar experiments related to Japanese. Moreover, we prove that our detector can recognize both machine-translated and machine-back-translated texts without the language information which is used to generate these machine texts. It demonstrates the persistence of our method in various applications in both low- and rich-resource languages.Comment: INLG 2019, 9 page
    corecore