362 research outputs found

    A Characterization for Decidable Separability by Piecewise Testable Languages

    Full text link
    The separability problem for word languages of a class C\mathcal{C} by languages of a class S\mathcal{S} asks, for two given languages II and EE from C\mathcal{C}, whether there exists a language SS from S\mathcal{S} that includes II and excludes EE, that is, I⊆SI \subseteq S and S∩E=∅S\cap E = \emptyset. In this work, we assume some mild closure properties for C\mathcal{C} and study for which such classes separability by a piecewise testable language (PTL) is decidable. We characterize these classes in terms of decidability of (two variants of) an unboundedness problem. From this, we deduce that separability by PTL is decidable for a number of language classes, such as the context-free languages and languages of labeled vector addition systems. Furthermore, it follows that separability by PTL is decidable if and only if one can compute for any language of the class its downward closure wrt. the scattered substring ordering (i.e., if the set of scattered substrings of any language of the class is effectively regular). The obtained decidability results contrast some undecidability results. In fact, for all (non-regular) language classes that we present as examples with decidable separability, it is undecidable whether a given language is a PTL itself. Our characterization involves a result of independent interest, which states that for any kind of languages II and EE, non-separability by PTL is equivalent to the existence of common patterns in II and EE

    Determinization of One-Counter Nets

    Get PDF
    One-Counter Nets (OCNs) are finite-state automata equipped with a counter that is not allowed to become negative, but does not have zero tests. Their simplicity and close connection to various other models (e.g., VASS, Counter Machines and Pushdown Automata) make them an attractive model for studying the border of decidability for the classical decision problems. The deterministic fragment of OCNs (DOCNs) typically admits more tractable decision problems, and while these problems and the expressive power of DOCNs have been studied, the determinization problem, namely deciding whether an OCN admits an equivalent DOCN, has not received attention. We introduce four notions of OCN determinizability, which arise naturally due to intricacies in the model, and specifically, the interpretation of the initial counter value. We show that in general, determinizability is undecidable under most notions, but over a singleton alphabet (i.e., 1 dimensional VASS) one definition becomes decidable, and the rest become trivial, in that there is always an equivalent DOCN

    Countdown games, and simulation on (succinct) one-counter nets

    Get PDF
    We answer an open complexity question by Hofman, Lasota, Mayr, Totzke (LMCS 2016) [HLMT16] for simulation preorder of succinct one-counter nets (i.e., one-counter automata with no zero tests where counter increments and decrements are integers written in binary), by showing that all relations between bisimulation equivalence and simulation preorder are EXPSPACE-hard for these nets. We describe a reduction from reachability games whose EXPSPACE-completeness in the case of succinct one-counter nets was shown by Hunter [RP 2015], by using other results. We also provide a direct self-contained EXPSPACE-completeness proof for a special case of such reachability games, namely for a modification of countdown games that were shown EXPTIME-complete by Jurdzinski, Sproston, Laroussinie [LMCS 2008]; in our modification the initial counter value is not given but is freely chosen by the first player. We also present a new simplified proof of the belt theorem that gives a simple graphic presentation of simulation preorder on one-counter nets and leads to a polynomial-space algorithm; it is an alternative to the proof from [HLMT16].Comment: A part of this paper elaborates arxiv-paper 1801.01073 and the related paper presented at Reachability Problems 201

    Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis

    Full text link
    We show how the Equation-Free approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level. We also exploit the scheme to perform a rare-events analysis by estimating an effective Fokker-Planck describing the evolving probability density function of the corresponding coarse-grained observables

    Weak Alternating Timed Automata

    Full text link
    Alternating timed automata on infinite words are considered. The main result is a characterization of acceptance conditions for which the emptiness problem for these automata is decidable. This result implies new decidability results for fragments of timed temporal logics. It is also shown that, unlike for MITL, the characterisation remains the same even if no punctual constraints are allowed

    Bondi-Metzner-Sachs symmetry, holography on null-surfaces and area proportionality of "light-slice" entropy

    Full text link
    It is shown that certain kinds of behavior, which hitherto were expected to be characteristic for classical gravity and quantum field theory in curved spacetime, as the infinite dimensional Bondi-Metzner-Sachs symmetry, holography on event horizons and an area proportionality of entropy, have in fact an unnoticed presence in Minkowski QFT. This casts new light on the fundamental question whether the volume propotionality of heat bath entropy and the (logarithmically corrected) dimensionless area law obeyed by localization-induced thermal behavior are different geometric parametrizations which share a common primordeal algebraic origin. Strong arguments are presented that these two different thermal manifestations can be directly related, this is in fact the main aim of this paper. It will be demonstrated that QFT beyond the Lagrangian quantization setting receives crucial new impulses from holography onto horizons. The present paper is part of a project aimed at elucidating the enormous physical range of "modular localization". The latter does not only extend from standard Hamitonian heat bath thermal states to thermal aspects of causal- or event- horizons addressed in this paper. It also includes the recent understanding of the crossing property of formfactors whose intriguing similarity with thermal properties was, although sometimes noticed, only sufficiently understood in the modular llocalization setting.Comment: 42 pages, changes, addition of new results and new references, in this form the paper will appear in Foundations of Physic
    • …
    corecore