5,359 research outputs found

    Baryon Structure

    Get PDF
    A review of the theoretical activity in Italy in the research field of Hadronic Physics is given. Specific focus is put on phenomenological models based on the effective degrees of freedom of constituent quarks, on parton distributions in hard processes in the Bjorken limit and on the possibility of linking the two concepts via evolution equations. A brief introduction is given also about the socalled generalized parton distributions.Comment: 20 pages, no figures, invited general report at the "IX Convegno su Problemi di Fisica Nucleare e Teorica", Cortona, Oct. 9-12, 2002 (Italy), to appear in World Scientific Proceeding

    3D Tracking Using Multi-view Based Particle Filters

    Get PDF
    Visual surveillance and monitoring of indoor environments using multiple cameras has become a field of great activity in computer vision. Usual 3D tracking and positioning systems rely on several independent 2D tracking modules applied over individual camera streams, fused using geometrical relationships across cameras. As 2D tracking systems suffer inherent difficulties due to point of view limitations (perceptually similar foreground and background regions causing fragmentation of moving objects, occlusions), 3D tracking based on partially erroneous 2D tracks are likely to fail when handling multiple-people interaction. To overcome this problem, this paper proposes a Bayesian framework for combining 2D low-level cues from multiple cameras directly into the 3D world through 3D Particle Filters. This method allows to estimate the probability of a certain volume being occupied by a moving object, and thus to segment and track multiple people across the monitored area. The proposed method is developed on the basis of simple, binary 2D moving region segmentation on each camera, considered as different state observations. In addition, the method is proved well suited for integrating additional 2D low-level cues to increase system robustness to occlusions: in this line, a naĂŻve color-based (HSI) appearance model has been integrated, resulting in clear performance improvements when dealing with complex scenarios

    Two-fluid model for VLBI jets. I. Homogeneous and stationary synchrotron emission simulations

    Full text link
    In this series of papers, we develop a two-fluid model for VLBI jets. The idea is that the jet itself is non- or mildly-relativistic (electrons and protons), while the radiating blobs are relativistic electron-positron `clouds' moving on helical paths wrapped around the jet. In this work, the emphasis is on the physical description of the clouds, and not on the structure or origin of the trajectory. In the simple case where the magnetic field is uniform and homogeneous accross the cloud, and the properties of the cloud are constant, the present paper shows synthetic maps of VLBI jets in different configurations, as well as the variation of different observational parameters along the trajectory.Comment: to appear in A&A, 8 pages and 10 figure

    A first study of the galaxy HRG 2304 and its companion AM 1646-795 (NED01)

    Full text link
    Aims. We report the first study of the peculiar ring-like galaxy HRG 2304 (NED02),which was previously classified as a ring galaxy with an elliptical smooth ring. This object was selected to prove that it is a candidate for the Solitaire-type ring galaxies in an early stage of ring formation. The main goal of this work is to provide the spectral characteristics of the current object and its companion AM 1646-795 (NED01). Methods. The study is based on spectroscopic observations in the optical band to highlight the characteristics of this interacting galaxy. To investigate the star formation history of HRG 2304 we used the stellar population synthesis code STARLIGHT. The direct V and B broad band images were used to enhance some fine structures. Results. Along the entire long-slit signal, the spectra of HRG 2304 and its companion resemble that of an early-type galaxy. We estimated a heliocentric systemic redshift of z = 0.0415, corresponding to heliocentric velocities of 12449 km s-1 for HRG 2304 (NED02) and 12430 km s-1 for AM1646-795 (NED01). The spatial variation in the contribution of the stellar population components for both objects are dominated by an old stellar population 2x10^9 < t < 13x10^9 yr. The observed radial-velocity distribution and the fine structures around HRG 2304 suggest an ongoing tidal interaction of both galaxies. Conclusions.The spectroscopic results and the morphological peculiarities of HRG 2304 can be adequately interpreted as an ongoing interaction with the companion galaxy. Both galaxies are early-type, the companion is elliptical, and the smooth distribution of the material around HRG 2304 and its off-center nucleus in the direction of AM1646-795 (NED01) characterize HRG 2304 as a Solitaire-type galaxy candidate in an early stage of ring formation.Comment: Accepted for publication in Astronomy and Astrophysics, 9 pages, 10 figures and 3 table

    The Efficiency of Gravitational Bremsstrahlung Production in the Collision of Two Schwarzschild Black Holes

    Full text link
    We examine the efficiency of gravitational bremsstrahlung production in the process of head-on collision of two boosted Schwarzschild black holes. We constructed initial data for the characteristic initial value problem in Robinson-Trautman spacetimes, that represent two instantaneously stationary Schwarzschild black holes in motion towards each other with the same velocity. The Robinson-Trautman equation was integrated for these initial data using a numerical code based on the Galerkin method. The final resulting configuration is a boosted black hole with Bondi mass greater than the sum of the individual mass of each initial black hole. Two relevant aspects of the process are presented. The first relates the efficiency Δ\Delta of the energy extraction by gravitational wave emission to the mass of the final black hole. This relation is fitted by a distribution function of non-extensive thermostatistics with entropic parameter q≃1/2q \simeq 1/2; the result extends and validates analysis based on the linearized theory of gravitational wave emission. The second is a typical bremsstrahlung angular pattern in the early period of emission at the wave zone, a consequence of the deceleration of the black holes as they coalesce; this pattern evolves to a quadrupole form for later times.Comment: 16 pages, 4 figures, to appear in Int. J. Modern Phys. D (2008

    Testing the black hole "no-hair" hypothesis

    Full text link
    Black holes in General Relativity are very simple objects. This property, that goes under the name of "no-hair," has been refined in the last few decades and admits several versions. The simplicity of black holes makes them ideal testbeds of fundamental physics and of General Relativity itself. Here we discuss the no-hair property of black holes, how it can be measured in the electromagnetic or gravitational window, and what it can possibly tell us about our universe.Comment: Commissioned by Classical and Quantum Gravit

    Moving Defects in AdS/CFT

    Full text link
    We study defects of various dimensions moving through Anti-de Sitter space. Using the AdS/CFT correspondence this allows us to probe aspects of the dual quantum field theory. We focus on the energy loss experienced by these defects as they move through the CFT plasma. We find that the behavior of these physical quantities is governed by induced world-volume horizons. We identify world-volume analogs for several gravitational phenomena including black holes, the Hawking-Page phase transition and expanding cosmological horizons.Comment: 24 pages, 7 figures. Version 2 contains two added reference
    • 

    corecore