1,047 research outputs found

    Phase Transitions in Planning Problems: Design and Analysis of Parameterized Families of Hard Planning Problems

    Get PDF
    There are two common ways to evaluate algorithms: performance on benchmark problems derived from real applications and analysis of performance on parametrized families of problems. The two approaches complement each other, each having its advantages and disadvantages. The planning community has concentrated on the first approach, with few ways of generating parametrized families of hard problems known prior to this work. Our group's main interest is in comparing approaches to solving planning problems using a novel type of computational device - a quantum annealer - to existing state-of-the-art planning algorithms. Because only small-scale quantum annealers are available, we must compare on small problem sizes. Small problems are primarily useful for comparison only if they are instances of parametrized families of problems for which scaling analysis can be done. In this technical report, we discuss our approach to the generation of hard planning problems from classes of well-studied NP-complete problems that map naturally to planning problems or to aspects of planning problems that many practical planning problems share. These problem classes exhibit a phase transition between easy-to-solve and easy-to-show-unsolvable planning problems. The parametrized families of hard planning problems lie at the phase transition. The exponential scaling of hardness with problem size is apparent in these families even at very small problem sizes, thus enabling us to characterize even very small problems as hard. The families we developed will prove generally useful to the planning community in analyzing the performance of planning algorithms, providing a complementary approach to existing evaluation methods. We illustrate the hardness of these problems and their scaling with results on four state-of-the-art planners, observing significant differences between these planners on these problem families. Finally, we describe two general, and quite different, mappings of planning problems to QUBOs, the form of input required for a quantum annealing machine such as the D-Wave II

    Quantum Annealing Applied to De-Conflicting Optimal Trajectories for Air Traffic Management

    Get PDF
    We present the mapping of a class of simplified air traffic management (ATM) problems (strategic conflict resolution) to quadratic unconstrained boolean optimization (QUBO) problems. The mapping is performed through an original representation of the conflict-resolution problem in terms of a conflict graph, where nodes of the graph represent flights and edges represent a potential conflict between flights. The representation allows a natural decomposition of a real world instance related to wind-optimal trajectories over the Atlantic ocean into smaller subproblems, that can be discretized and are amenable to be programmed in quantum annealers. In the study, we tested the new programming techniques and we benchmark the hardness of the instances using both classical solvers and the D-Wave 2X and D-Wave 2000Q quantum chip. The preliminary results show that for reasonable modeling choices the most challenging subproblems which are programmable in the current devices are solved to optimality with 99% of probability within a second of annealing time.Comment: Paper accepted for publication on: IEEE Transactions on Intelligent Transportation System
    • …
    corecore