15,347 research outputs found

    Collapsed speech segment detection and suppression for WaveNet vocoder

    Full text link
    In this paper, we propose a technique to alleviate the quality degradation caused by collapsed speech segments sometimes generated by the WaveNet vocoder. The effectiveness of the WaveNet vocoder for generating natural speech from acoustic features has been proved in recent works. However, it sometimes generates very noisy speech with collapsed speech segments when only a limited amount of training data is available or significant acoustic mismatches exist between the training and testing data. Such a limitation on the corpus and limited ability of the model can easily occur in some speech generation applications, such as voice conversion and speech enhancement. To address this problem, we propose a technique to automatically detect collapsed speech segments. Moreover, to refine the detected segments, we also propose a waveform generation technique for WaveNet using a linear predictive coding constraint. Verification and subjective tests are conducted to investigate the effectiveness of the proposed techniques. The verification results indicate that the detection technique can detect most collapsed segments. The subjective evaluations of voice conversion demonstrate that the generation technique significantly improves the speech quality while maintaining the same speaker similarity.Comment: 5 pages, 6 figures. Proc. Interspeech, 201

    Visually Indicated Sounds

    Get PDF
    Objects make distinctive sounds when they are hit or scratched. These sounds reveal aspects of an object's material properties, as well as the actions that produced them. In this paper, we propose the task of predicting what sound an object makes when struck as a way of studying physical interactions within a visual scene. We present an algorithm that synthesizes sound from silent videos of people hitting and scratching objects with a drumstick. This algorithm uses a recurrent neural network to predict sound features from videos and then produces a waveform from these features with an example-based synthesis procedure. We show that the sounds predicted by our model are realistic enough to fool participants in a "real or fake" psychophysical experiment, and that they convey significant information about material properties and physical interactions

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Visual to Sound: Generating Natural Sound for Videos in the Wild

    Full text link
    As two of the five traditional human senses (sight, hearing, taste, smell, and touch), vision and sound are basic sources through which humans understand the world. Often correlated during natural events, these two modalities combine to jointly affect human perception. In this paper, we pose the task of generating sound given visual input. Such capabilities could help enable applications in virtual reality (generating sound for virtual scenes automatically) or provide additional accessibility to images or videos for people with visual impairments. As a first step in this direction, we apply learning-based methods to generate raw waveform samples given input video frames. We evaluate our models on a dataset of videos containing a variety of sounds (such as ambient sounds and sounds from people/animals). Our experiments show that the generated sounds are fairly realistic and have good temporal synchronization with the visual inputs.Comment: Project page: http://bvision11.cs.unc.edu/bigpen/yipin/visual2sound_webpage/visual2sound.htm
    corecore